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1 Introduction

The aim of the report is showing the results of analysis for investigated structure which are homoge-
nous open waveguides with diffrent cross-sections. The idea of the analysis is based on the direct field
matching technique involving the usage of projection of the fields at the boundary on a fixed set of
orthogonal basis functions.

Two regions of investigation can be distinguished in the structure: region I, located inside the
waveguide, and region II, outside. The z components of the electric and magnetic fields in both
regions have the following form (suppressing e/“* time dependence):
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where FF = {E,H}, k2 = w?pe; + 72 for i = {I,1I}, w is the angular frequency, v is the mode
propagation coefficient, J,,(-) and Hg)() are Bessel and Hankel functions, respectively, of order m
and AL and B are unknown field coefficients. The utilization of the Hankel function of the second
kind satisfies Sommerfeld’s radiation condition (representing the outward-traveling wave). Due to the
assumed field representation in (1) and (2), only convex shapes of the waveguide can be analyzed.
The other components of the electric and magnetic fields (Ey, E,, Hg and H,) can be derived from
Maxwell’s equations.

In order to determine the mode propagation coefficients we need to satisfy the continuity conditions
for the tangential field components on the guide surface. Describing the surface of the guide by functions
p = o(s) and ¢ = p(s), where s is the curvilinear coordinate that follows the surface, the continuity
conditions for tangential components can be written as follows:

Fi(o(s), p(s), 2) = Fy'(o(s), ¢(s), 2) (3)
Fi(o(s), ¢(s), 2) = F{(o(s), (s), 2) (4)

where Ft(')(-) = (sin ¢ cos @ — cos p sin a)Fp(')(-) + (Coscpcoia + sin ¢ sin a)Fq(s')() and a = «(s) is an
angle between the x-axis and the normal outgoing vector N to the cylinder surface.

We can construct the matrix by using the equations. When the matrix is well known the problem is
reduced to finding the roots of the determinant. A complex root finding algorithm based on delaunay
triangulation is utilized to find the propagation coefficients of the investigated guides [?].

2 Ellitical fiber

Several guided and leaky modes for various ellipticities of the fiber are calculated and the results
are compared with the analytical ones. The cross-section of the guide is illustrated in Fig. 1. The
calculated propagation coefficients for different ratios k = 7, maintaining constant area of the guide
cross-section. The calculation were performed by selecting M = 7 mode expansion functions, and the
integrals were evaluated with the use of the trapezoidal rule, with P = 180 points evenly covering the

boundary contour. Such a choice results from convergence analysis, which is presented in table 2.
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Figure 1: The geometry of the ellitical fiber cross-section. For k =1, a = b = 0.5 ym. The material
parameters: £,1 = 8.41, €,9 = 2.4025. Frequency corresponds to wavelength Ay = 3 um in vacuum.

Table 2: Convergence of the method for the example from Fig. 1 (values of propagation coefficients of
TMp; mode for k = 3). Percentage error in bracket.

M| P=90 P=180 | P=360 | P=720
; 1.7411 1.7417 1.7418 1.7418
(-0,9755% ) | (-0,9414%) | (-0,9357%) | (-0,9357%)
; 1.7521 1.7496 1.7491 1.7490
(-0,3653%) | (-0.5075%) | (-0.5359%) | (-0.5416%)
: 1.7522 1.7496 1.7491 1.7490
(-0.3596%) | (-0.5075%) | (-0.5359%) | (-0.5416%)
. 1.7405 1.7518 1.7526 1.7528
(-1.0250%) | (-0.3824%) | (-0.3369%) | (-0.3255%)
. - 1.7510 1.7527 1.7527
) (-0.4279%) | (-0.3312%) | (-0.3312%)
0 - - 1.7545 1.7562
) ) (-0.2289%) | (-0.1322%)

3 Ellitical fiber with lossy material

The secound structure is ellitical fiber as in the previous section. The difference between last structure
is the lossy material in the core of fiber. The cross-section of the guide is illustrated in Fig. 1. The
calculated propagation coefficient for ratio k = 2 and for diffrent loss coefficients. The calculation were
performed by selecting M = 5 mode expansion functions, and the integrals were evaluated with the
use of the trapezoidal rule, with P = 720 points evenly covering the boundary contour.

4 Square with rounded corners fiber

The third structure is a dielectric fiber with square cross-section (rounded corners) with the same
material parameters as in the previous example. The analysis is performed again on a single frequency
in function of radius of rounded corners as illustrated in Fig. 4. The calculated propagation coefficients
for different corner radii, again maintaining constant area of the guide cross-section, is presented in
Fig. 5. The calculation were performed by selecting M = 7 and P = 360. The convergence analysis is
presented in table 3.
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Figure 2: The propagation coefficients for the elliptical fiber in function of ratio k = § with parameters
from Fig. 1.

Table 3: Convergence of the method for the example from Fig. 4 (values of propagation coefficients).

M| P=9|P=180| P=360 | P =720
5 1.5763 | 1.5764 1.5764 1.5765
6 1.5763 | 1.5765 1.5765 1.5765
. 1.5763 | 1.5764 1.5764 1.5765
3 1.5779 | 1.5781 1.5781 1.5781
9 1.5779 | 1.5781 1.5781 1.5781
10 1.5779 | 1.5781 1.5781 1.5781

5 Triangular with rounded corners fiber

The last example considers the triangular fiber with rounded corners depicted in Fig. 6. The calculated
propagation coefficients for different corner radii, maintaining constant area of the guide cross-section,
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Figure 3: The propagation coefficients for the elliptical fiber in function of loss coefficients with pa-
rameters from Fig. 1 and k = 2.

Table 4: Convergence of the method for the example from Fig. 6 (values of propagation coefficients).

M| P=9|P=180 | P=360 | P =720
5 1.5907 | 1.5910 1.5910 1.5910
6 1.5959 | 1.5963 1.5963 1.5963
. 1.5959 | 1.5963 1.5963 1.5963
3 1.5959 | 1.5963 1.5963 1.5963
9 1.5983 | 1.5987 1.5987 1.5987
10 1.5983 | 1.5987 1.5987 1.5987

is presented in Fig. 7. The calculation were performed by selecting M = 5 and P = 360. The
convergence analysis is presented in table 4.



Figure 4: The geometry of the square with rounded corners fiber cross-section. The material parameters
as in Fig. 1.

6 Schedule

In next week the results from HFSS will be genereted. The tables and the figures need to be suplemented
with HFSS data. The data from algorytm need to be compare with the data from HFSS.
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Figure 5: The propagation coefficients for the square fiber in function of radius of rounded corners
with parameters from Fig. 4.
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Figure 6: The geometry of the triangular with rounded corners fiber cross-section. The material
parameters as in Fig. 1.
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Figure 7: The propagation coefficients for the triangular fiber in function of radius of rounded corners
with parameters from Fig. 6.



