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1 Introduction

The aim of the report is showing the results of analysis for investigated structure which are homoge-
nous open waveguides with di�rent cross-sections.The idea of the analysis is based on the direct �eld
matching technique involving the usage of projection of the �elds at the boundary on a �xed set of
orthogonal basis functions.

Two regions of investigation can be distinguished in the structure: region I, located inside the
waveguide, and region II, outside. The z components of the electric and magnetic �elds in both
regions have the following form (suppressing ejωt time dependence):

F I
z =

M∑
m=−M

AFmJm(κIρ)e
jmφe−γz (1)

F II
z =

M∑
m=−M

BF
mH

(2)
m (κIIρ)e

jmφe−γz (2)

where F = {E,H}, κ2i = ω2µiεi + γ2 for i = {I, II}, ω is the angular frequency, γ is the mode

propagation coe�cient, Jm(·) and H
(2)
m (·) are Bessel and Hankel functions, respectively, of order m

and AFm and BF
m are unknown �eld coe�cients. The utilization of the Hankel function of the second

kind satis�es Sommerfeld's radiation condition (representing the outward-traveling wave). Due to the
assumed �eld representation in (1) and (2), only convex shapes of the waveguide can be analyzed.
The other components of the electric and magnetic �elds (Eφ, Eρ, Hφ and Hρ) can be derived from
Maxwell's equations.

In order to determine the mode propagation coe�cients we need to satisfy the continuity conditions
for the tangential �eld components on the guide surface. Describing the surface of the guide by functions
ρ = %(s) and φ = ϕ(s), where s is the curvilinear coordinate that follows the surface, the continuity
conditions for tangential components can be written as follows:

F I
z(%(s), ϕ(s), z) = F II

z (%(s), ϕ(s), z) (3)

F I
t (%(s), ϕ(s), z) = F II

t (%(s), ϕ(s), z) (4)

where F
(·)
t (·) = (sinϕ cosα − cosϕ sinα)F

(·)
ρ (·) + (cosϕ cosα + sinϕ sinα)F

(·)
φ (·) and α = α(s) is an

angle between the x-axis and the normal outgoing vector ~N to the cylinder surface.
We can construct the matrix by using the equations. When the matrix is well known the problem is

reduced to �nding the roots of the determinant. A complex root �nding algorithm based on delaunay
triangulation is utilized to �nd the propagation coe�cients of the investigated guides [?].

2 Ellitical �ber

Several guided and leaky modes for various ellipticities of the �ber are calculated and the results
are compared with the analytical ones. The cross-section of the guide is illustrated in Fig. 1. The
calculated propagation coe�cients for di�erent ratios k = a

b , maintaining constant area of the guide
cross-section. The calculation were performed by selecting M = 7 mode expansion functions, and the
integrals were evaluated with the use of the trapezoidal rule, with P = 180 points evenly covering the
boundary contour. Such a choice results from convergence analysis, which is presented in table 2.
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Figure 1: The geometry of the ellitical �ber cross-section. For k = 1, a = b = 0.5 µm. The material
parameters: εr1 = 8.41, εr2 = 2.4025. Frequency corresponds to wavelength λ0 = 3 µm in vacuum.

Table 2: Convergence of the method for the example from Fig. 1 (values of propagation coe�cients of
TM01 mode for k = 3). Percentage error in bracket.

M P = 90 P = 180 P = 360 P = 720

5
1.7411 1.7417 1.7418 1.7418

(-0,9755% ) (-0,9414%) (-0,9357%) (-0,9357%)

6
1.7521 1.7496 1.7491 1.7490

(-0,3653%) (-0.5075%) (-0.5359%) (-0.5416%)

7
1.7522 1.7496 1.7491 1.7490

(-0.3596%) (-0.5075%) (-0.5359%) (-0.5416%)

8
1.7405 1.7518 1.7526 1.7528

(-1.0250%) (-0.3824%) (-0.3369%) (-0.3255%)

9
� 1.7510 1.7527 1.7527

(�) (-0.4279%) (-0.3312%) (-0.3312%)

10
� � 1.7545 1.7562

(�) (�) (-0.2289%) (-0.1322%)

3 Ellitical �ber with lossy material

The secound structure is ellitical �ber as in the previous section. The di�erence between last structure
is the lossy material in the core of �ber. The cross-section of the guide is illustrated in Fig. 1. The
calculated propagation coe�cient for ratio k = 2 and for di�rent loss coe�cients. The calculation were
performed by selecting M = 5 mode expansion functions, and the integrals were evaluated with the
use of the trapezoidal rule, with P = 720 points evenly covering the boundary contour.

4 Square with rounded corners �ber

The third structure is a dielectric �ber with square cross-section (rounded corners) with the same
material parameters as in the previous example. The analysis is performed again on a single frequency
in function of radius of rounded corners as illustrated in Fig. 4. The calculated propagation coe�cients
for di�erent corner radii, again maintaining constant area of the guide cross-section, is presented in
Fig. 5. The calculation were performed by selecting M = 7 and P = 360. The convergence analysis is
presented in table 3.
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Figure 2: The propagation coe�cients for the elliptical �ber in function of ratio k = a
b with parameters

from Fig. 1.

Table 3: Convergence of the method for the example from Fig. 4 (values of propagation coe�cients).

M P = 90 P = 180 P = 360 P = 720

5
1.5763 1.5764 1.5764 1.5765

6
1.5763 1.5765 1.5765 1.5765

7
1.5763 1.5764 1.5764 1.5765

8
1.5779 1.5781 1.5781 1.5781

9
1.5779 1.5781 1.5781 1.5781

10
1.5779 1.5781 1.5781 1.5781

5 Triangular with rounded corners �ber

The last example considers the triangular �ber with rounded corners depicted in Fig. 6. The calculated
propagation coe�cients for di�erent corner radii, maintaining constant area of the guide cross-section,
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Figure 3: The propagation coe�cients for the elliptical �ber in function of loss coe�cients with pa-
rameters from Fig. 1 and k = 2.

Table 4: Convergence of the method for the example from Fig. 6 (values of propagation coe�cients).

M P = 90 P = 180 P = 360 P = 720

5
1.5907 1.5910 1.5910 1.5910

6
1.5959 1.5963 1.5963 1.5963

7
1.5959 1.5963 1.5963 1.5963

8
1.5959 1.5963 1.5963 1.5963

9
1.5983 1.5987 1.5987 1.5987

10
1.5983 1.5987 1.5987 1.5987

is presented in Fig. 7. The calculation were performed by selecting M = 5 and P = 360. The
convergence analysis is presented in table 4.
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Figure 4: The geometry of the square with rounded corners �ber cross-section. The material parameters
as in Fig. 1.

6 Schedule

In next week the results from HFSS will be genereted. The tables and the �gures need to be suplemented
with HFSS data. The data from algorytm need to be compare with the data from HFSS.
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Figure 5: The propagation coe�cients for the square �ber in function of radius of rounded corners
with parameters from Fig. 4.
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Figure 6: The geometry of the triangular with rounded corners �ber cross-section. The material
parameters as in Fig. 1.
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Figure 7: The propagation coe�cients for the triangular �ber in function of radius of rounded corners
with parameters from Fig. 6.
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