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1 Introduction

The aim of the report is to present hybrid method that combine �nite element method and mode

matching method. In this report to solve the problem the Z matrix is used. Using this approach the

far �eld can be obtained as well as the near �eld and no open space boundary conditions are needed.

The scattering problem is de�ned in two dimensions. The structure is homogeneous in the direction of

the z axis and there is no �eld variation in this direction. The structure is excite with TM �eld which

means that:

Hz = 0 (1)

Hx = 0 (2)

Ey = 0 (3)

2 Scattering of electromagnetic �eld on a dielectric rod of cylindrical

cross-section

The dielectric rod is placed coaxially to the z axis. In this case the computational domain is divided

into two regions (Fig. 1). The �rst region is a vacuum and the second is a dielectric. The Ez �eld

gives precise information about the �elds in these two regions and ful�lls the Helmholtz equation. The

excitation can be de�ned as:

r

x
y

z
incident wave

Figure 1: The considered structure (dielectric rod of circular cross section)

Eiz =

M∑
m=−M

cmJm(κ1ρ)ejmφ (4)

where κi = ω
√
µiεi. The scattered �eld can be expressed:

Esz =

M∑
m=−M

amH
(2)
m (κ1ρ)ejmφ (5)

The electric �elds inside and outside the rod can be then written as

Eoutz =
M∑

m=−M
(cmJm(κ1ρ) + amH

(2)
m (κ1ρ))ejmφ (6)
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and

Einz =

M∑
m=−M

bmJm(κ2ρ)ejmφ (7)

The corresponding magnetic �elds are

Hout
φ =

κ1
jωµ1

M∑
m=−M

(cmJ
′
m(κ1ρ) + amH

′(2)
m (κ1ρ))ejmφ (8)

and

H in
φ =

κ2
jωµ2

M∑
m=−M

bmJ
′
m(κ2ρ)ejmφ (9)

where cm is an excitation coe�cient and am and bm are unknown coe�cients. By using boundary

conditions at ρ = r and φ ∈ [0, 2π] the unknown coe�cients can be found (tangential components of

the �elds outside and inside the rod must be equal):

am =
κ1Jm(κ2r)J

′
m(κ1r)− κ2Jm(κ1r)J

′
m(κ2r)

κ2H
(2)
m (κ1r)J ′m(κ2r)− κ1Jm(κ2r)H

′(2)
m (κ1r)

cm (10)

bm =
κ1H

′(2)
m (κ1r)am + κ1J

′
m(κ1r)cm

κ2J ′m(κ2r)
(11)

In this section we consider only the plane wave as an excitation but the equations are general. For the

plane wave cm = j−m.
In Fig. 2 the scattering characteristics for three di�erent radiuses of the rod are presented (r =

38, 2mm, r = 9, 5mm and r = 2, 4mm respecively; where frequency f = 5GHz and εr2 = 5). In

order to determine the optimal value of M (to obtain the complete set of the function M → ∞) a

brief analysis of convergence is presented. In Fig. 3 the scattering characteristics for di�erent numbers

of basis functions is shown. Moreover, the scattered �eld coe�cients am are presented in Fig. 4.

According to the results M = 15 is assumed in the subsequent part of the report.

3 Z matrix

To calculate Z matrix, the domain need to be divide into two regions (I and II) as in the Fig. 5. There

is an arti�cial layer at the boundary of the regions. On this layer the Z matrix can be de�ned as a

relation between the total electric �eld and the total magnetic �eld. The Z matrix unambiguously

de�nes the surrounded structure. After calculation its inside can be treated as a black box. In this

approach the �elds on the layer can be written as:

Etotz (ρ = R,φ) =

M∑
m=−M

(cmJm(κ1R) + amH
(2)
m (κ1R))ejmφ (12)

and

Htot
φ (ρ = R,φ) =

κ1
jωµ1

M∑
m=−M

(cmJ
′
m(κ1R) + amH

′(2)
m (κ1R))ejmφ (13)

The Z matrix can be written as a relation between the coe�cients of the electric and magnetic �elds

expansion in terms of ejmφ:
d = Ze (14)

where d nad e are vertical vectors composed of the elements (m=-M,..,M):

dm = cmJm(κ1R) + amH
(2)
m (κ1R) (15)

em =
κ1
jωµ1

(cmJ
′
m(κ1R) + amH

′(2)
m (κ1R)) (16)
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Figure 2: The scattering characteristic a)r = 38, 2mm b)r = 9, 5mm c) r = 2, 4mm
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Figure 3: The scattering characteristics for di�erent values of M

The exact form of the impedance matrix can be found by combination of (12), (13) and (10):

Z = (HT + J)(ĤT + Ĵ)−1 (17)
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Figure 4: Coe�cients of the scattered �eld

Figure 5: Domain decomposition used in Z matrix de�nition

whereTmatrix is a matrix of transformation between coe�cients am and cm (diagonal matrix where co-

e�cients on the diagonal can be found using the equation (10)), H= diag(H
(2)
−M (κ1R), ...,H

(2)
M (κ1R)) is

a diagonal matrix with Hankel function, J = diag(J−M (κ1R), ..., JM (κ1R)), Ĵ = diag(J ′−M (κ1R), ..., J ′M (κ1R))

and Ĥ = diag(H ′
(2)
−M (κ1R), ...,H ′

(2)
M (κ1R)).

For the same cases as in the previous section the scattering characteristics are shown in Fig. 6.

The results are exactly the same as in the direct approach (see Fig 6).

4 Z matrix estimation using FEM

The problem of scattering on any cylindrical object homogeneous in the direction of the z axis for TM

modes is described by Helmholtz equation (we also assume that there is no �eld variation in the z
direction):

~∇2
tEz(x, y) + k2Ez(x, y) = 0 (18)

To solve this equation, the formula have to be multiplied by testing function F (x, y) and integrated

over the computational domain S (region I in Fig. 5).∫∫
S

F (x, y)~∇2
tEz(x, y) ds+

∫∫
S

F (x, y)k2Ez(x, y) ds = 0 (19)

By using Green's theorem the equation (19) can be expressed as:∮
L

F (x, y)~∇tEz ◦ ~n dl −
∫∫
S

~∇tF (x, y) ◦ ~∇tEz(x, y) ds+

∫∫
S

F (x, y)k2Ez(x, y) ds = 0 (20)
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Figure 6: The scattering characteristic a) r = 38, 2mm b) r = 9, 5mm c) r = 2, 4mm (solid line -

analytical results; dotted line - Z matrix is used)

where L is the boundary of the computational domain - circle of radius R (see Fig. 5) and the unit

vector ~n =~iρ. The dependence between Ez and Ht from Maxwell equation can be written as:

~∇tEz = −jωµ~iz × ~Ht (21)

If the equation (21) and equation (20) are combined then the problem can be rewritten:∫∫
S

~∇tF (x, y) ◦ ~∇tEz(x, y) ds−
∫∫
S

F (x, y)k2Ez(x, y) ds+ jωµ

∮
L

F (x, y)(~iz × ~Ht) ◦ ~n dl = 0 (22)

It can be also written:∫∫
S

~∇tF (x, y) ◦ ~∇tEz(x, y) ds−
∫∫
S

F (x, y)k2Ez(x, y) ds− jωµ
∮
L

F (x, y)~iz ◦ (~n× ~Ht) dl = 0 (23)

The magnetic �eld can be treated as an excitation on the boundary L.

~Ht =
M∑

m=−M
Im~htm (24)
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where (in the considered scattering problem) we assume ~htm = ejmφ~iφ. Using equation (24) gives us

formula:∫∫
S

~∇tF (x, y)◦ ~∇tEz(x, y) ds−
∫∫
S

F (x, y)k2Ez(x, y) ds−jωµ
M∑

m=−M
Im

∮
L

F (x, y)~iz ◦(~n×~htm) dl = 0

(25)

The electric �eld is expressed by the basis functions

Ez =

N∑
n=1

3∑
i=3

Ψ
[n]
(i)α

[n]
(i) (26)

and then Galerkin method can be applied

F (x, y) = α
[q]
(j) (27)

Hence

3∑
i=1

∫∫
S[q]

~∇tα[q]
(j)◦~∇tα

[q]
(i) ds−

3∑
i=1

Ψ
[q]
(i)

∫∫
S[q]

α
[q]
(j)k

2α
[q]
(i) ds−jωµ

M∑
m=−M

Im

∮
L∩L[q]

α
[q]
(j)
~iz◦(~n×~htm) dl = 0 (28)

The equation can be written in matrix notation:

C [q]Ψ[q] − k2T [q]Ψ[q] = −jωµB[q]I (29)

where

B[q] =
[
B

[q]
−M , · · · , B

[q]
M

]
(30)

B[q] =



∫
L∩L[q]

α
[q]
1
~iz ◦ (~n× ~ht(−M)) dl

∫
L∩L[q]

α
[q]
1
~iz ◦ (~n× ~ht(−M+1)) dl · · ·

∫
L∩L[q]

α
[q]
1
~iz ◦ (~n× ~htM ) dl∫

L∩L[q]

α
[q]
2
~iz ◦ (~n× ~ht(−M)) dl

∫
L∩L[q]

α
[q]
2
~iz ◦ (~n× ~ht(−M+1)) dl · · ·

∫
L∩L[q]

α
[q]
2
~iz ◦ (~n× ~htM ) dl∫

L∩L[q]

α
[q]
3
~iz ◦ (~n× ~ht(−M)) dl

∫
L∩L[q]

α
[q]
3
~iz ◦ (~n× ~ht(−M+1)) dl · · ·

∫
L∩L[q]

α
[q]
3
~iz ◦ (~n× ~htM ) dl


(31)

and

I =


I−M
I−M+1

...

IM

 (32)

The equation (29) can be rewrite in global form.

CΨ− k2TΨ = −jωµBI (33)

or simply by

GΨ = −jωµBI (34)

The electric �eld can be expressed by:

Ez =

M∑
s=−M

Vsezs (35)

where we assume the basis functions as ezs = ejmφ. By simple projection with the use of functions

~n× htm we get: ∫
L

Ez~iz ◦ (~n× ~htm) dl =

M∑
s=−M

Vs

∫
L

ezs~iz ◦ (~n× ~htm) dl (36)
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Table 2: Error of ZFEM matrix de�ned by Err = Z−ZFEM in function of maximal mesh edge length

hmax max
i,j

[|Err|]i,j/max
i,j

[|Z|]i,j100% λ
hmax

0.003 43.5 8.9381

0.002 41.6 13.4071

0.001 11.4 26.8143

Then using (26)

N∑
q=1

3∑
i=1

Ψ
[q]
(i)

∫
L∩L[q]

α
[q]
(i)
~iz ◦ (~n× ~htm) dl =

M∑
s=−M

Vs

∫
L

epzs~iz ◦ (~n× ~htm) dl (37)

Finally
N∑
q=1

(B[q]
m )

T
Ψ[q] = ∆mV (38)

or simply

BTΨ = ∆V (39)

From (34) we get

Ψ = −jωµG−1BI (40)

Then combining both above equations we get:

V = jωµ∆−1BTG−1BI (41)

Finally the ZFEM matrix can be expressed as:

ZFEM = jωµ∆−1BTG−1B (42)

where ∆ is identity matrix multiplied by 2πR.

5 Hybrid method

In the presented approach �nite element method and analitycal approach are combined. Using the Z

matrix, the far �eld can be obtained for any incident �eld by simple reformulation of (17).
a−M
a−M+1

...

am

 = (H− ZFEMĤ)−1(ZFEMĴ− J)


c−M
c−M+1

...

cm

 (43)

The result of combining analytical and �nite element method (FEM) approaches are shown in Fig 7.

The characteristics well agree with the analytical result for �ner meshes. In table 2 error between

analytical Z matrix and ZFEM for di�erent meshes are collected.

6 Conclusions and further development

The proposed approach has been veri�ed for a simple structure of circular cross section (due to exact

analytical results). However it can by applied for obstacles of any cross section shape. The numerical

tests for di�erent structures will be performed in the near future.
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Figure 7: Characteristics for di�erent values of maximal triangle edge length hmax (where λ is the

wavelength inside the dielectric)
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