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1 Introduction

The aim of this report is to verify the accuracy of the reliable greedy multi-point model order reduction
(RGM-MOR) approach for speeding up the simulations of electromagnetic field scattered from arbitrary
metallic object. Namely, we consider the frequency-dependent bi-static radar cross-section kind of
scattering simulations.

2 Standard scattering formulation

The subsequent steps of the standard scattering formulation approach, (without model-order reduction)
are listed below:

1. The geometry of the structure to be analyzed is defined in InventSIM. It is important to enclose
the structure in the box, surfaces of which are placed ’far enough’ (formulation?) from the object.
On the box the absorbing boundary conditions (ABC) of the first kind are applied.

2. The plane wave excitation is applied. It is based on the formulation [1], in which the currentsMs

and JS are impressed o the metallic surfaces of the analysed object. The following parameters
of a plane wave have to be specified:

• Unitary wave propagation vector k̂ (e.g. [1, 0, 0], [0, 0, 1] etc.)

• Electric field polarization ~E0. It has to be orthonormal to k̂!

• Frequency, which is a vector f = {f1, f2 . . . fn} and n is a number of frequency points in
the bandwidth.

3. In subsequent step the system of equation is constructed in which the left-hand side is associated
with the geometry and materials of the analysed structures, while the right hand side deals with
the excitation (Ms and JS currents):

(Γ + sG + s2C)e(s) = sb(s), (1)

where Γ,G,C ∈ CN×N are system matrices, s = jω/c, b(s) ∈ CN is the excitation vector and
e(s) ∈ CN is a matrix of unknown FE coefficients. It should be emphasised that the b(s) vector
exhibits a non-affine frequency dependence.

4. The system of equations (1) is solved, giving the electric field distribution in the near-field zone.

5. Next, the far field is computed using the near-to-far (NTF) field transformation. To this end the
integrals of the field on the surfaces of ABC have to be computed. Note that the far-field region
defined as: R > 2D2/λ, where D is a largest dimension of scatterer and λ is a wavelength. One
has to also specify the points in the spherical coordinates system (r, θ, φ) in which the far field
is to be computed, where r = R.

6. The last step is the post-processing, which is usually the plot of the magnitude of the filed in the
far-field zone. In this report we concentrate on the simulations which deal with the scattering
field computation in the frequency-domain.
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3 Scattering formulation enriched with MOR

In this section the scattering field computation procedure enriched with the model order reduction
approach. The reduction is applied to the (in most cases) most time consuming step, which is the
solution of the system of equation associated with the near-field zone (Section 2, step 4), while the rest
of the steps remain unchanged.

The reduced-order model, which approximates the properties of the FEM system (1) can be ob-
tained by means of one of the reliable greedy multipoint model order reduction (RGM-MOR) described
in details in [2]:

(ΓR + sGR + s2CR)eR(s) = sbR(s), (2)

where ΓR = QTΓQ, GR = QTGQ, CR = QTCQ, bR(s) = QTbR(s) are reduced system matrices,
Q ∈ CN×q is the orthonormal projection matrix, and q denotes the reduced order, where q � N . The
reduced-order model is created in an automated and computationally efficient way and it is accurate
over a wide frequency band. The accuracy and efficiency of the RGM-MOR approach is ensured by
the efficiently computed Z-param goal-oriented error estimator, which is well-correlated with the real
error. The details of the error estimator formula are provided in [3].

What is important, since the right-hand side vector b(s) exhibits a non-affine frequency dependence,
the reduced order model as well as the error estimator should be computed using the formulations
provided in EDISON Report 1 [4]. More precisely, the b(s) vector is subject to proper orthogonal
decomposition (POD) which generates the basis of a few vectors that span the whole subspace of
excitation vectors b(s). In effect, one can express b(s) as a linear combination of few (M) vectors,
since the field pattern of the plane wave is in general not strongly-dispersive:

b(s) ≈
M∑
j=1

aj(s) · bj . (3)

Note, that in order to obtain coefficients aj(s) and vectors bj one has to perform the Proper Orthogonal
Decomposition (POD) or Reduced Basis Method (RBM) for the whole frequency band. Let us also
denote bR = {b1 b2 . . .bN} and aR(s) = {a1(s) a2(s) . . . aN (s)}:

b(s) ≈ bR · aR(s). (4)

In effect, the frequency dependence is pushed to the scalar functions a(s) and the equation-to-be-
reduced exhibits affine nature. The subsequent steps of the RGM-MOR approach are performed for
the right hand side approximated by these few vectors. Eq. (4) is used to approximate RHS in the
SAPOR procedure, in solution of (2) and in error estimator:

Efast(s) = max{·aR(s)
T · (bT

R · r(s))
/|2s · aR(s)

T · (bT
R · bR) · aR(s)|} =

max{·(2saR(s)
T · (bT

R · bR) · aR(s)−
aR(s)

T · (bT
R · Γ ·Q) · eR −

saR(s)
T · (bT

R ·G ·Q) · eR −
saR(s)

T · (bT
R · (bR · aR(s)) · (bR · aR(s))

TQ) · eR −
s2aR(s)

T · (bT
R ·C ·Q) · eR)

/|2s · aR(s)
T · (bT

R · bR) · aR(s)|} (5)
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where:

r(s) = 2s(bR · aR(s))−
Γ ·Q · eR −

sG ·Q · eR −
s(bR · aR(s)) · (bR · aR(s))

T ·Q · eR −
s2C ·Q · eR. (6)

To sum-up: the RGM-MOR approach is a fully automatic black-box reduction procedure, controlled
by the reliable and efficient error estimator.

Finally, in order to transform the near field to the far field zone, a full solution vector e(s) is
required (as the input at the step 5). However, the model order reduction provides the approximated
solution (up to the specified accuracy), computed at each frequency (si) by:

e(si) ≈ QeR(si). (7)

4 Numerical Experiments

The final section contains the results of the numerical experiments performed using the techniques
described in section 2 and 3. The two PEC (perfect electric conductor) structures are herein considered:

• A cube - the length of the edge: 10 mm. It is placed centrally in the air-cube with ABC surfaces
with the edges of the length 50 mm. Fig. 1 a).

Figure 1: a) PEC (perfect electric conductor) cube, b) Turbina Valentina

• The Inlet Turbine (so called - Turbina Valentina). The dimensions of the structure are provided
in [5]. Fig. 1 b).

1. Experiment 1. PEC cube.

The first test deals with very simple structure - PEC cube. The FEM discretization leads to the
system of equations with as many as 52066 variables. The plane wave E-field polarization is ~ix,
whereas the wave propagation vector is k̂ = ~iz. The frequency bandwidth is: 30-35 GHz, with
the step 0.1 GHz.

The RGM-MOR parameters are as follows: maximum value of vectors in the projection basis,
in each of the expansion points: qmax = 32 vectors and the tolerance: tol = 1e − 3, whereas
the accuracy in the POD approach = 1e − 6. The characteristics of the structure before, after
reduction and the real error (the difference of the magnitude of the far-field electric field) are
provided in Fig. 2.

The table 1 contains the computational time of subsequent MOR steps.
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Reduction time 11.72s
Initial time (POD) 4.99s

Solution time 5.29s
Orthogonalization 0.89s
Error estimation 0.025s
Matrices update 0.42s
Size of a basis 55

Expansion points 3
Global max error 0.0001
Approx. Speed up 2.1

2. Experiment 2. Turbina Valentina

The second test deals with the inlet turbine. The FEM discretization leads to the system of
equations with as many as 2342264 variables. The plane wave E-field polarization is ~iy, whereas
the wave propagation vector is k̂ = −~iz. The frequency bandwidth is: 1.5-2 GHz, with the step
0.02 GHz.

The RGM-MOR parameters are as follows: maximum value of vectors in the projection basis,
in each of the expansion points: qmax = 20 vectors and the tolerance: tol = 1e − 4, whereas
the accuracy in the POD approach = 1e − 6. The table 2 contains the computational time of
subsequent MOR steps.

Reduction time 2921.2s
Initial time (POD) 293.0s

Solution time 2344.1s
Orthogonalization 200.3s
Error estimation 0.129s
Matrices update 74.7s
Size of a basis 105

Expansion points 4
Global max error (estimated) 0.00007

Approx. Speed up 7.47

Next, we set the reduction parameters to: maximum value of vectors in the projection basis, in
each of the expansion points: qmax = 32 vectors and the tolerance: tol = 1e−5 and the accuracy
in the POD approach = 1e−12. The computational time of the subsequent steps is listed below:

Figure 2: PEC cube
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Figure 3: Inlet turbine

Reduction time 3794.8s
Initial time (POD) 306.2s

Solution time 3044.2s
Orthogonalization 322.4s
Error estimation 0.2s
Matrices update 104.3s
Size of a basis 105

Expansion points 5
Global max error (estimated) 0.000009

Approx. Speed up 6.06

The characteristics of the structure before, after reduction and the real error (the difference of
the magnitude of the far-field electric field) as well as the reference results from [5] are provided
in Fig. 3.

5 Estimator inaccuracy

Although the reduction error is at the low-level, the scattering characteristics are indistinguishable,
the real error is not bounded by the estimated one. For example in the last case, the estimated error is
below -100dB and the reduction procedure is stopped, while the real error, computed for the far-field
is at the level -70dB. The reason is that the field computed by means of the reduced model (applied
in the near-field region) is transformed to the far-field region. The error estimator is computed
for the near-field (while constructing the reduced model), whereas the real-error applies
to the far field.
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