Raport 1. Multipoint Reduction Approach for Non-Affine Right Hand Side Problems

dr eng. Grzegorz Fotyga

February 2, 2018
European Union
European Regional Development Fund

Revision	Date	Author(s)	Description
1.0	22.08 .2017	G. Fotyga	created
2.0	23.10 .2017	G. Fotyga	created

1 Introduction

Standard global multipoint model order reduction, enhanced by the error estimator tool [1] for finite element method problems is performed on the system of equations of the following form:

$$
\begin{equation*}
\left(\boldsymbol{\Gamma}+s \mathbf{G}+s^{2} \mathbf{C}\right) \mathbf{E}(s)=s \mathbf{B I} \tag{1}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathbf{B}=c \widetilde{\mathbf{B}} /\left(Z_{P}^{1 / 2}\right) \tag{2}
\end{equation*}
$$

The approach [1] requires, that the right hand side of (1) - matrix $\widetilde{\mathbf{B}}$ is constant, while the port impedance $\left(Z_{P}\right)$ depends on s. Therefore, approach [1] can be applied in the analysis of the structures excited through f.e. homogeneous waveguide ports or coaxial lines. In the case of micro-strip lines and inhomogeneous ports one has to derive a novel error-estimator, which takes into account, that the matrix $\widetilde{\mathbf{B}}$ is frequency dependent (non-affine).

The goal of this report is to derive the multipoint reduction formulation for problems, with nonaffine RHS.

2 Standard error estimator (for affine RHS)

The goal-oriented error estimator is based on a residual error and is defined as follows:

$$
\begin{equation*}
E_{s}(s)=\max _{i}\left\{\eta_{i} \cdot\left(\mathbf{b}_{i}\right)^{T} \cdot\left(\mathbf{r}_{i}(s)\right) /\left|2 s \eta_{i}\left(\mathbf{b}_{i}\right)^{T} \cdot \mathbf{b}_{i}\right|\right\} \tag{3}
\end{equation*}
$$

where \mathbf{r}_{i} is the i-th residual vector and \mathbf{b}_{i} is the i-th vector of the matrix $\widetilde{\mathbf{B}}$. See [1] for details, eq. (24) and (25) - for slow and fast computation of an a-posteriori estimator, respectively. If the structure is excited by means of a single-mode, single-port, eq. (3) is simplified to:

$$
\begin{equation*}
E_{s}(s)=\max \left\{\eta \cdot(\mathbf{b})^{T} \cdot(\mathbf{r}(s)) /\left|2 s \eta(\mathbf{b})^{T} \cdot \mathbf{b}\right|\right\} \tag{4}
\end{equation*}
$$

3 Error estimator (for non-affine RHS)

In the following parts of the rep. we assume, that the structure is excited by means of a single-port and single-mode. If the excitation exhibits non-affine nature (which means that \mathbf{b} depends on s), one can express $\mathbf{b}(s)$ as a linear combination of few (N) vectors, since the field pattern at the ports is in general not strongly-dispersive:

$$
\begin{equation*}
\mathbf{b}(s) \approx \sum_{j=1}^{N} a_{j}(s) \cdot \mathbf{b}_{j} \tag{5}
\end{equation*}
$$

Note, that in order to obtain coefficients $a_{j}(s)$ and vectors \mathbf{b}_{j} one has to perform the Proper Orthogonal Decomposition (POD) or Reduced Basis Method (RBM) for the whole frequency band. Let us also denote $\mathbf{b}_{R}=\left\{\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{N}\right\}$ and $\mathbf{a}_{R}(s)=\left\{a_{1}(s) a_{2}(s) \ldots a_{N}(s)\right\}$:

$$
\begin{equation*}
\mathbf{b}(s) \approx \mathbf{b}_{R} \cdot \mathbf{a}_{R}(s) \tag{6}
\end{equation*}
$$

In effect, the frequency dependence is pushed to the scalar functions $a(s)$ and the equation-to-bereduced exhibits affine nature.

Substituting (5) to (4) yields:

$$
\begin{array}{r}
E(s)=\max \left\{\eta \cdot(\mathbf{b}(\mathbf{s}))^{T} \cdot(\mathbf{r}(s)) /\left|2 s \eta(\mathbf{b}(\mathbf{s}))^{T} \cdot \mathbf{b}(\mathbf{s})\right|\right\} \approx \\
\approx \max \left\{\eta \cdot\left(\sum_{j=1}^{N} a_{j}(s) \cdot \mathbf{b}_{j}\right)^{T} \cdot(\mathbf{r}(s))\right. \\
\left./\left|2 s \eta\left(\sum_{j=1}^{N} a_{j}(s) \cdot \mathbf{b}_{j}\right)^{T} \cdot \sum_{j=1}^{N} a_{j}(s) \cdot \mathbf{b}_{j}\right|\right\}= \\
=\max \left\{\eta \cdot \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{r}(s)\right)\right. \\
\left./\left|2 s \eta \cdot \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{b}_{R}\right) \cdot \mathbf{a}_{R}(s)\right|\right\} . \tag{7}
\end{array}
$$

Finally, the fast formula for the error estimator can be derived, taking into account that the residual vector is defined as follows:

$$
\begin{array}{r}
\mathbf{r}(s)=2 s \mathbf{b}(s)- \\
\boldsymbol{\Gamma} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}- \\
s \mathbf{G} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}- \\
s \mathbf{b}(s) \cdot \mathbf{b}(s)^{T} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}- \\
s^{2} \mathbf{C} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}, \tag{8}
\end{array}
$$

where \mathbf{e}_{r} denotes N vectors of unknowns obtained from the reduced model:

$$
\begin{equation*}
\left(\widehat{\boldsymbol{\Gamma}}+s \widehat{\mathbf{G}}+s^{2} \widehat{\mathbf{C}}\right) \mathbf{e}_{r}(s)=s\left(\widehat{\mathbf{b}}_{R} \cdot \mathbf{a}_{R}(s)\right) \cdot \mathbf{I} \tag{9}
\end{equation*}
$$

Substituting (6) to (8) yields:

$$
\begin{array}{r}
\mathbf{r}(s)=2 s\left(\mathbf{b}_{R} \cdot \mathbf{a}_{R}(s)\right)- \\
\boldsymbol{\Gamma} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}- \\
s \mathbf{G} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}- \\
s\left(\mathbf{b}_{R} \cdot \mathbf{a}_{R}(s)\right) \cdot\left(\mathbf{b}_{R} \cdot \mathbf{a}_{R}(s)\right)^{T} \cdot \mathbf{Q} \cdot \mathbf{e}_{r}- \\
s^{2} \mathbf{C} \cdot \mathbf{Q} \cdot \mathbf{e}_{r} . \tag{10}
\end{array}
$$

Finally, the fast estimator formula reads:

$$
\begin{array}{r}
E_{f a s t}(s)=\max \left\{\eta \cdot \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{r}(s)\right)\right. \\
\left./\left|2 s \eta \cdot \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{b}_{R}\right) \cdot \mathbf{a}_{R}(s)\right|\right\}= \\
\max \left\{\eta \cdot \left(2 s \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{b}_{R}\right) \cdot \mathbf{a}_{R}(s)-\right.\right. \\
\mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{\Gamma} \cdot \mathbf{Q}\right) \cdot \mathbf{e}_{r}- \\
s \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{G} \cdot \mathbf{Q}\right) \cdot \mathbf{e}_{r}- \\
s \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot\left(\mathbf{b}_{R} \cdot \mathbf{a}_{R}(s)\right) \cdot\left(\mathbf{b}_{R} \cdot \mathbf{a}_{R}(s)\right)^{T} \mathbf{Q}\right) \cdot \mathbf{e}_{r}- \\
\left.s^{2} \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{C} \cdot \mathbf{Q}\right) \cdot \mathbf{e}_{r}\right) \\
\left./\left|2 s \eta \cdot \mathbf{a}_{R}(s)^{T} \cdot\left(\mathbf{b}_{R}^{T} \cdot \mathbf{b}_{R}\right) \cdot \mathbf{a}_{R}(s)\right|\right\} \tag{11}
\end{array}
$$

4 Numerical tests

In the numerical test the three structures have been taken into account (Fig. 1).

Figure 1: Structures: a) filter, b) coupler, c) Vivaldi antenna.

Figure 2: Filter plots.

	Filter	Coupler	Antenna
Number of Frequency point	300	100	101
Frequency bandwidth	$2-12 \mathrm{GHz}$	$0.6-2.4 \mathrm{GHz}$	$4-6 \mathrm{GHz}$
Number of expanding points	4	1	3
Number of vectors in V	54	36	21
Speedup	19.8	10.8	26
Reduction time	83.3 s	23.4 s	108.94 s

Figure 3: Coupler plots.

References

[1] Rewienski, Michal, Adam Lamecki, and Michal Mrozowski. "Greedy multipoint model-order reduction technique for fast computation of scattering parameters of electromagnetic systems." IEEE Transactions on Microwave Theory and Techniques 64.6 (2016): 1681-1693.

Figure 4: Antenna plots.

