
Electromagnetic Design of
flexIble SensOrs

Localization of 3D point in tetrahedra mesh

Adam Dziekoński
April 4, 2018

The „EDISOn - Electromagnetic Design of flexIble SensOrs” project, agreement no TEAM
TECH/2016-1/6, is carried out within the TEAM-TECH programme of the Foundation for Polish
Science co-financed by the European Union under the European Regional Development Fund.

Revision Date Author(s) Description

1.0 22.03.2018 Adam Dziekoński created
1.1 29.03.2018 Adam Dziekoński created
1.2 30.03.2018 Adam Dziekoński created
1.3 04.04.2018 Adam Dziekoński created

Contents

1 Introduction 1

2 Netgen 1

3 Walking algorithms. Basic visibility and stochastic walk algorithms. 2

4 Strategies how to improve the visibility and stochastic walk algorithms 7
4.1 Strategy 1 - go to the first neighbour on the list . 7
4.2 Strategy 2 - go to the neighbour with minimum value of face orientation test 7
4.3 Strategy 3 - go to the random neighbour . 8

5 Determine the set of destination points (tetrahedra) 14
5.1 List of destination points (tetrahedra) to be found . 14
5.2 Coarse and fine mesh . 14
5.3 Range of nodes . 17
5.4 Destination point on a face of the tetrahedra . 17

6 Jump and Walk 19

7 Conclusions 27

1 Introduction

In this report algorithms, implementations and performance of localization of 3D point in tetrahedral
mesh are discussed.

Firstly, it is presented how the mesh is generated and read in Matlab (Section 2). Then, features
of visibility and stochastic walk algorithms reported in [2, 3] and their implementations are described
in Section 3. Strategies how to improve the visibility and stochastic walk algorithms are described and
verified in Section 4. After selecting the most effective walking algorithm implemented in this report
several examples are discussed in which it is presented how to find multiple destination points in mesh
which can lie inside a tetrahedron or lie on a face of tetrahedron or be a node of a mesh (Section 5).

In test described in Sections 3-5 starting tetrahedra (in most cases) were selected in such a manner
that finding a destination point by a walk algorithm is not trivial. The influence of the selection
starting tetrahedron is crucial, thus in Section 6 an initialization phase (a jump to starting tetrahedron
in a walk reported in [4]) is discussed.

All computations in this report are performed in Matlab 2017a, operating system Windows 10,
processor: Intel Xeon X5680 (i7) 3.33GHz.

2 Netgen

In this report Experimental Netgen/NGSolve 6.1 featuring Python 3 was used [1]. To verify the
effectiveness of all implemented walking algorithms several structures have been considered (Fig. 1).
The procedure of generating a mesh and loading it in Matlab is as follows. One needs to load a
geometry file (*.geo) in Netgen and exports a mesh file (*.mesh). Then, a mesh file is read in Matlab

1

(with a proper usage of fscanf, sscanf and fgetl build-in functions) and two arrays required for walking
algorithms are extracted from (*.mesh) file:

• Nodes - K x 3 array with x, y , z coordinates of K nodes,

• Teta - N x 5 array with medium property, and four indices of nodes that represent N tetrahedra.

(a) cube (b) fishera (c) boxcyl

(d) cubandspheres (e) broken torus (f) shaft

Figure 1: Structures tested in this report.

3 Walking algorithms. Basic visibility and stochastic walk algorithms.

In this section two algorithms of walking in tetrahedral mesh are described. Firstly, the visibility and
stochastic walk algorithms (Algorithm 3-4) were implemented after studying [2, 3]. Both of these
algorithms are based on the 3D orientation test Eq. 1. This test is performed for each face of the
tetrahedron and returns the position of a point (w) against a face given by a tree vertices (t,u,v). The
side of face tuv on which the point w lies is given by the sign of the determinant. In 3D if the sign
of determinant is positive it means that the next visited tetrahedron should be through this face. In
other words the next visited tetrahedron should be a neighbour of a current tetrahedron which has a
common face for which orientation test equals to 1.

orientation3D(t,u,v,w) = sign(

∣∣∣∣∣∣
ux − tx vx − tx wx − tx
uy − ty vy − ty wy − ty
uz − tz vz − tz wz − tz

∣∣∣∣∣∣) (1)

In our algorithms the following mapping of tetrahedron nodes list generated by Netgen was assumed:

Q =

123
134
142
243

 (2)

Matrix Q is not accidental, since such a mapping guaranties that each face of a tetrahedron is counter
clock-wise (CCW) oriented. For example if a tetrahedron is defined by a list of nodes: 99 784 945 942.
The four faces CCW oriented due to the Q-matrix mapping are as follows:

2

• Face 1: 99 784 945

• Face 2: 99 945 942

• Face 3: 99 942 784

• Face 4: 784 942 945

The difference between the visibility and stochastic algorithms is the order in which faces are verified
with the orientation test. The visibility algorithm performs the orientation test face by face in order in
which the four faces of the tetrahedron are defined, so orientation tests are performed for faces 1,2,3,4
as long as a sign of Eq. 1 is not equal to 1. In a stochastic walk algorithm there is a random selection
of the order in which faces are tested (Algorithm 4, step 12).

Both these algorithms performed well for simply connected structures such as a cube (cube.geo
in Netgen, Fig. 1a). Figure 2 presents the path made by a visibility walk algorithm in mesh divided
into 384 tetrahedra. For the same setup stochastic walk found the destination point (destination
tetrahedron) in the same number of steps (14), however, three times selected different ’next’ tetrahedra
to visit. It is due to the random order of faces for which orientation tests have been made.

Both visibility and stochastic walks work properly for a structure named ’fichera’ (fichera.geo from
Netgen, Fig. 3). The mesh has 2368 tetrahedra. The starting and destination points were selected such
as there is a straight line between starting and destination point, however, there are no tetrahedra on
this line. In this case a destination point (tetrahedron) was found after 27 steps.

Table 2: List of tetrahedra visited in visibility walk (VW) and stochastic walk (SW).

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14
VW 1 344 349 348 346 43 48 47 357 85 90 89 87 6
SW 1 344 349 347 346 43 48 364 357 361 90 89 87 6

Behaviour of these two walking algorithms was also verified for another structure named ’boxcyl’
(boxcyl.geo in Netgen, Fig. 4). The starting point was selected as a tetrahedron in top of the left
cylinder and destination point was selected as a top of the right cylinder. Unfortunately, neither
visibility nor stochastic walks manged to locate the tetrahedron that contains the destination point
(Fig. 4). After dozen or so steps both algorithm are looped. They reach the tetrahedron for which a
orientation test selects the only one good face through which the walk should be continued, however,
the current tetrahedron has no neighbours of common face since this face is on boundary of the mesh.

3

(a)

(b)

Figure 2: Structure: ’cube’. Visibility walk from starting tetrahedron (green) to tetrahedron that
contains a destination point (red).

1. Inputs: Nodes, Teta % extracted from *.mesh file
2. Setup:

max_steps % maximal number of steps during walk
starting_teta % number of the first teta visited during walk
destination_point % we find a teta which contains this point represented with coordinates [x,y,z]
step % current iteration/step

3. [Teta _neigbours] = find4TetaNeigbours(Teta) // find up to 4 neighbours of each Teta(i,:)
4. current_teta = starting_teta, step = 1
5. while (step < max_steps)
6. t = Teta (current_teta,:)
7. [in_out] = checkPointInsideTeta(t,destination_point,...) B test if the point is in current teta
8. if (in_out==1)
9. destination_teta = current_teta
10. break
11. end if
11. for i=1:4 //loop over faces
12. face_orientation = FaceOrientationTest(t,Nodes,destination_point,...) B calc face orientation: -1,1
13. if face_orientation == 1 B go through these face to the next teta
14. current_teta = findTetaNeighboursBy3Nodes(t, Teta_neighbours, current_teta,...) B find a neighbour to visit
15. break
16. else
17. continue
18. end if
19. end for
20. step = step + 1;
21. end while
22. Output: destination_teta

Algorithm 1: Visibility walk in tetrahedral mesh

4

(a) visibility walk

(b) stochastic walk

Figure 3: Structure: ’fichera’. Visibility and stochastic walks from starting tetrahedron (green) to
tetrahedron that contains a destination point (red).

5

(a) visibility walk

(b) stochastic walk

Figure 4: Structure: ’boxcyl’. Visibility and stochastic walks from starting tetrahedron (green) to
tetrahedron that contains a destination point (red).

1. Inputs: Nodes, Teta % extracted from *.mesh file
2. Setup:

max_steps % maximal number of steps during walk
starting_teta % number of the first teta visited during walk
destination_point % we find a teta which contains this point represented with coordinates [x,y,z]
step % current iteration/step

3. [Teta _neigbours] = find4TetaNeigbours(Teta) // find up to 4 neighbours of each Teta(i,:)
4. current_teta = starting_teta, step = 1
5. while (step < max_steps)
6. t = Teta (current_teta,:)
7. [in_out] = checkPointInsideTeta(t,destination_point,...) B test if the point is in current teta
8. if (in_out==1)
9. destination_teta = current_teta
10. break
11. end if
12. face_order = randperm(4) % random permuatation of [1,2,3,4]
13. for j=1:4 //loop over faces
14. i = face_order(j)
15. face_orientation = FaceOrientationTest(t,Nodes,destination_point,...) B calc face orientation: {-1,1}
16. if face_orientation == 1 B go through these face to the next teta
17. current_teta = findTetaNeighboursBy3Nodes(t, Teta_neighbours, current_teta,...) B find a neighbour to visit
18. break
19. else
20. continue
21. end if
22. end for
23. step = step + 1;
24. end while
25. Output: destination_teta

Algorithm 2: Stochastic walk in tetrahedral mesh

6

(a) visibility walk (b) stochastic walk

Figure 5: Structure: ’boxcyl’, strategy #1. Visibility and stochastic walks from starting tetrahedron
(green) to tetrahedron that contains destination point (red).

4 Strategies how to improve the visibility and stochastic walk algo-
rithms

In this section 3 strategies how to improve the effectiveness of the walk algorithms are presented. For
each of strategies the additional information about walking is collected in structure history :

• history.onPath - array that contains information of the tetrahedra visited during walk,

• history.wrong - array that contains information of the tetrahedra visited during walk that were
selected as ’wrong’ because an orientation test selected a face and a current tetrahedron does not
have any neighbour through that face, while other faces were verified negatively.

4.1 Strategy 1 - go to the first neighbour on the list

The first strategy is as follows: if you are in ’wrong’ tetrahedron, visit the first tetrahedron from
the list of neighbours, despite the fact that the orientation test could have verified it negatively
(orientation3D=-1).

Figure 5 presents the result of application of the first strategy. This strategy did not pay off in
both variants of walking. The tetrahedral mesh has 3072 elements, so the max_steps=3072 (the naive
search for tetrahedron in entire mesh would require at most 3072 steps). During walk there were 3049
and 3056 ’wrong’ visited tetrahedra in visibility and stochastic walks, respectively. It means that more
than 99% of tetrahedra were visited unnecessarily.

4.2 Strategy 2 - go to the neighbour with minimum value of face orientation test

The second strategy is based on the orientation test. However, despite the sign of the determinant,
we also store in memory the value of the orientation test (Eq. 3). In this case if the currently visited
tetrahedron is verified by the algorithm as ’wrong’, then the next visited tetrahedron is the neighbour
with minimal value of orientation3D_value. In other words: go in completely opposite direction
that is suggested by the orientation test. Figure 6 presents the result of application of the second
strategy. This strategy did not pay off in both variants of walking. During walk there were 2924 and
2974 ’wrong’ visited tetrahedra in visibility and stochastic walks, respectively. It means that more
than 99% of tetrahedra were visited unnecessarily. An additional variant was also verified in which not
only a minimal value of orientation3D_value is considered but also a next visited tetrahedron cannot
be a member of history.onPath (was not visited before). Unfortunately, this remembering concept did
not help for the analyzed structure and algorithm quickly looped.

7

(a) visibility walk

(b) stochastic walk

Figure 6: Structure: ’boxcyl’, strategy #2. Visibility and stochastic walks from starting tetrahedron
(green) to tetrahedron that contains destination point (red).

orientation3D_value(t,u,v,w) =

∣∣∣∣∣∣
ux − tx vx − tx wx − tx
uy − ty vy − ty wy − ty
uz − tz vz − tz wz − tz

∣∣∣∣∣∣ (3)

4.3 Strategy 3 - go to the random neighbour

The third strategy is as follows: if you are in ’wrong’ tetrahedron, visit the random tetrahedron
from the list of neighbours, despite the fact that the orientation test could have verified it negatively
(orientation3D=-1) (Algorithms 3-4). This strategy payed off. Visibility walk (VW) and stochastic
walk (VW) required 863 and 913 steps to reach the destination point. During the VW and SW
walks 665 (77%) and 743 (81%) tetrahedra were classified as ’wrong’. Figure 7 confirms that the
setup (starting_teta, destination_point) is very unfriendly, so both algorithms were reaching for the
boundary of the left cylinder, however, thanks to a random selection of next tetrahedron (may be
opposite direction than suggested by the orientation test) both algorithms managed to escape from
the left cylinder and found the tetrahedron which contains a destination point.

The third strategy was also verified for more complicated and not simply connected structure:
’shaft’ (shaft.geo in Netgen, Fig. 1f). Since the strategy #3 contains a random selection of the next
tetrahedron in case the current tetrahedron is classified as a ’wrong’ tetrahedron the number of steps
in walk can be different. In Table 3 data from four tests are collected. One may observe that in average

8

(a) visibility walk

(b) stochastic walk

Figure 7: Structure: ’boxcyl’, strategy #3. Visibility and stochastic walks from starting tetrahedron
(green) to tetrahedron that contains destination point (red).

visibility walk (#3) requires more steps to find a destination point than a stochastic walk (#3). It is
due to the fact that the number of ’wrong’ tetrahedra is significantly lower. Figure 8 presents paths
obtained with visibility and stochastic walks for which a strategy #3 was applied (test no. 1 from
Tab. 3).

Table 3: List of tetrahedra visited in visibility walk (VW) and stochastic walk (SW) [Structure: ’shaft’].

Test number VW (all steps) VW (wrong) SW (all steps) SW (wrong)
1 389 209 (53%) 287 118 (41%)
2 545 328 (60%) 229 80 (35%)
3 349 169 (48%) 283 121 (43%)
4 533 314 (59%) 200 67 (34%)

Average 454 255 (56%) 250 97 (39%)

The last structure presented in this section is a ’broken torus’ (Fig. 1e). Strategy #3 proposed for
visibility and stochastic walk algorithms was verified for two setups:

9

(a) visibility walk

(b) stochastic walk

Figure 8: Structure: ’shaft’, strategy #3. Visibility and stochastic walks from starting tetrahedron
(green) to tetrahedron that contains destination point (red).

1. Inputs: Nodes, Teta % extracted from *.mesh file
2. Setup:

max_steps % maximal number of steps during walk
starting_teta % number of the first teta visited during walk
destination_point % we find a teta which contains this point represented with coordinates [x,y,z]
step % current iteration/step

3. [Teta _neigbours] = find4TetaNeigbours(Teta) // find up to 4 neighbours of each Teta(i,:)
4. current_teta = starting_teta, step = 1, wrong_step = 1, history.path(1) = current_teta
5. while (step < max_steps)
6. t = Teta (current_teta,:)
7. [in_out] = checkPointInsideTeta(t,destination_point,...) B test if the point is in current teta
8. if (in_out==1)
9. destination_teta = current_teta
10. break
11. end if
12. previuos_teta = current_teta
13. for i=1:4 //loop over faces
14. face_orientation = FaceOrientationTest(t,Nodes,destination_point,...) B calc face orientation: -1,1
15. if face_orientation == 1 B go through these face to the next teta
16. current_teta = findTetaNeighboursBy3Nodes(t, Teta_neighbours, current_teta,...) B find a neighbour to visit
17. break
18. else
19. continue
20. end if
21. end for
22. if (previous_teta == current_teta)
23. history.wrong(wrong_step) = current_teta
24. neighbour_order = randperm(nnz(Teta_neighbours(current_teta,:)))
25. current_teta = neighbour_order(1)
26. end if
27. step = step + 1;
28. history.path(step) = current_teta
29. end while
30. Output: destination_teta

Algorithm 3: Visibility walk with strategy #3 in tetrahedral mesh.

10

1. Inputs: Nodes, Teta % extracted from *.mesh file
2. Setup:

max_steps % maximal number of steps during walk
starting_teta % number of the first teta visited during walk
destination_point % we find a teta which contains this point represented with coordinates [x,y,z]
step % current iteration/step

3. [Teta _neigbours] = find4TetaNeigbours(Teta) // find up to 4 neighbours of each Teta(i,:)
4. current_teta = starting_teta, step = 1, wrong_step = 1, history.path(1) = current_teta
5. while (step < max_steps)
6. t = Teta (current_teta,:)
7. [in_out] = checkPointInsideTeta(t,destination_point,...) B test if the point is in current teta
8. if (in_out==1)
9. destination_teta = current_teta
10. break
11. end if
12. previuos_teta = current_teta
13. face_order = randperm(4) % random permuatation of [1,2,3,4]
14. for j=1:4 //loop over faces
15. i = face_order(j)
16. face_orientation = FaceOrientationTest(t,Nodes,destination_point,...) B calc face orientation: -1,1
17. if face_orientation == 1 B go through these face to the next teta
18. current_teta = findTetaNeighboursBy3Nodes(t, Teta_neighbours, current_teta,...) B find a neighbour to visit
19. break
20. else
21. continue
22. end if
23. end for
24. if (previous_teta == current_teta)
25. history.wrong(wrong_step) = current_teta
26. neighbour_order = randperm(nnz(Teta_neighbours(current_teta,:)))
27. current_teta = neighbour_order(1)
28. end if
29. step = step + 1;
30. history.path(step) = current_teta
31. end while
32. Output: destination_teta

Algorithm 4: Stochastic walk with strategy #3 in tetrahedral mesh

setup #1:
starting_teta = 2213 // a node with the lowest value of z-coordinate: [0.0545 -0.8966 2.0365]
destination_point = [0.1435 1.3673 -0.100]

setup #2:
starting_teta = 1016 // a node with the lowest value of z-coordinate: [0.0525 -1.4876 0.6601]
destination_point = [0.1435 1.3673 -0.100]

For the first setup both visibility and stochastic walks performed very well (Figure 9, Table 4) and
found the destination point (tetrahedron). It can be noticed that stochastic walk required fewer steps
and there were lower number of ’wrong’ tetrahedra on the path.

For the second setup, in which the starting tetrahedron has significantly lower z-coordinate (the
difficulty level is higher), the visibility walk failed for all tests. Stochastic walk found the destination
point in three of four tests (Figure 10, Table 5).
Conclusions of this section:

1. The best effectiveness of walks implemented by the author of this report was obtained for a
stochastic walk with strategy #3 (referenced as SW#3 in the following sections).

2. For inconveniently located starting tetrahedron SW#3 requires many steps or fails to find a
destination point.

11

(a) visibility walks

(b) stochastic walks

Figure 9: Structure: ’broken torus’, strategy #3, setup #1. Four visibility (a) and stochastic (b) walks
from starting tetrahedron (green) to tetrahedron that contains destination point (red).

12

(a) visibility walks

(b) stochastic walks

Figure 10: Structure: ’broken torus’, strategy #3, setup #2. Four visibility (a) and stochastic (b)
walks from starting tetrahedron (green) to tetrahedron that contains destination point (red).

13

Table 4: List of tetrahedra visited in visibility walk (VW) and stochastic walk (SW). Structure: broken
torus, setup #1.

Test number VW (all steps) VW (wrong) SW (all steps) SW (wrong)
1 62 8 (13%) 71 12 (17%)
2 129 58 (45%) 82 20 (24%)
3 56 6 (11%) 57 4 (7%)
4 54 3 (6%) 51 4 (7%)

Average 75 19 (19%) 65 10 (14%)

Table 5: List of tetrahedra visited in visibility walk (VW) and stochastic walk (SW). Structure: broken
torus, setup #2.

Test number VW (all steps) VW (wrong) SW (all steps) SW (wrong)
1 2650 2414 (91%) 114 44 (39%)
2 2650 2439 (92%) 97 33 (34%)
3 2650 2443 (92%) 72 16 (22%)
4 2650 2432 (92%) 2650 2391 (90%)

Average - - (-%) - - (-%)

5 Determine the set of destination points (tetrahedra)

In this section three examples are discussed in which the stochastic walk (SW#3) algorithm was
employed to find multiple destination points in a mesh.

5.1 List of destination points (tetrahedra) to be found

In the first case the destination points come from the list of designation points:
DestinationPoints =
// x y z
0.2000 0.2000 0.2000
-10.0000 -8.1393 10.8942
-38.0000 -0.4678 0.2487
60.0000 -0.4678 0.2487

Figure 11 confirms that 4 tetrahedra including points from DestinationPoints list were found with
stochastic walk (SW#3) algorithm.

5.2 Coarse and fine mesh

In this subsection we consider the same geometry however two meshes with different densities were
generated. The tested geometry is ’fishera’. Coarse and fine meshes contain 37 and 2368 tetrahedra,
respectively. The coarse mesh has 24 nodes.

Figure 12 presents tetrahedra which contain nodes of the coarse mesh that were found with stochas-
tic walk (SW#3) algorithm. In case destination points are nodes of the mesh there are few tetrahedra
which contain such a point (node). Thus after a single walk if a destination tetrahedron is found
then an additional test is done in order to find all tetrahedra which contain the node. Result of this
additional verification is presented in Fig. 13 where all tetrahedra that contain a node are displayed
(blue - found by the walk, green - found in the additional verification after the walk).

The second tested geometry is ’boxcyl’. Coarse and fine meshes contain 384 and 24576 tetrahedra,
respectively. The coarse mesh has 139 nodes (destination points/tetrahedra) and all 139 tetrahedra
were found with stochastic walk (SW#3) (Figure 14). What is more, neighbours of found tetrahedra
during a walk were tested (after a walk) and Fig. 15 presents all tetrahedra that contain 139 nodes.

14

Figure 11: Structure: ’broken torus’, strategy #3. Four calls of stochastic walks from starting tetra-
hedron (green) to four different tetrahedron that contain destination point (red).

Figure 12: Structure: ’fishera’, strategy #3. Result of 24 calls of stochastic walks performed in order
to find 24 unique tetrahedra that contain nodes of the coarse mesh (blue).

15

Figure 13: Structure: ’fishera’, strategy #3. Result of 24 calls of stochastic walks performed in order
to find 24 unique tetrahedra that contain nodes of the coarse mesh (blue) and tetrahedra found in
additional test (green) performed after a walk.

Figure 14: Structure: ’boxcyl’, strategy #3. Result of 139 calls of stochastic walks performed in order
to find 139 unique tetrahedra that contain nodes of the coarse mesh (blue).

16

Figure 15: Structure: ’boxcyl’, strategy #3. Result of 24 calls of stochastic walks performed in order
to find 139 unique tetrahedra that contain nodes of the coarse mesh (blue) and tetrahedra found in
additional test (green) performed after a walk.

The third geometry ’cubeandspheres’ is the most unfriendly of verified in this subsection since there
are not simply connected regions of the structure. Coarse and fine mesh contain 98 and 6272 tetrahedra,
respectively. There are 66 nodes in a coarse mesh and 65 tetrahedra were found with stochastic walk
(SW#3) (Figure 16). Unfortunately, one node was not found. What is more, neighbours of 65 found
tetrahedra were tested and Figure 17 presents all tetrahedra that contain 65 nodes.

5.3 Range of nodes

In this subsection we consider an example in which the task is to find all tetrahedra which contain
destination points that are nodes from given range of x-,y-,z- coordinates. Figures 18-19 present results
of both the stochastic walks and an additional verification of tetrahedra for two ranges: 79<x<90 and
15<x<20, respectively. In the first case (Fig. 18) a stochastic walk found as many tetrahedra (65)
as there were destination points (nodes) and an additional test upgraded these sets with a list of
neighbours which contains the nodes as well. In the second case (Fig. 19) a stochastic walk found 15
tetrahedra (of 17 destination points), however, the two remaining were found among neighbours.

5.4 Destination point on a face of the tetrahedra

In order to verify if a destination point lies on the face of tetrahedron after each walk all neighbours
of the found tetrahedron are verified. Concluding with the previous subsection the entire procedure is
as follows :

1. A single stochastic walk (SW#3) finishes after finding a destination tetrahedron (single index of
a row of Teta array), then

2. the first test is performed (loop over nodes) to verify if the destination point is a node of a found
tetrahedron, if it is true then tetrahedra are verified to select which of them contain a destination
point, then

3. the second test is performed (loop over faces) to verify if the destination point lies on a face
of a tetrahedron, if it is true then neighbours are verified to select which neighbours contain a
destination point (one neighbour if point lies on a face, few neighbours if point lies on an edge),
then

4. output of such a walk and verification are: an index of found tetrahedra during walk (1), a list of
neighbours ’by a node’ (2), list of neighbours ’by a face’ (3) and an unique list of all tetrahedra
that contain the destination point.

17

Figure 16: Structure: ’cubeandspheres’, strategy #3. Result of 66 calls of stochastic walks performed
in order to find 65 unique tetrahedra that contain nodes of the coarse mesh (blue).

Figure 17: Structure: ’cubeandspheres’, strategy #3. Result of 66 calls of stochastic walks performed
in order to find 65 unique tetrahedra that contain nodes of the coarse mesh (blue) and tetrahedra
found in additional test (green) performed after a walk.

18

Figure 18: Structure: ’shaft’, strategy #3. Result of 65 calls of stochastic walks performed in order to
find 65 unique tetrahedra that contain nodes of the coarse mesh (blue) from a determined range and
tetrahedra found in additional test (green) performed after a walk.

Figure 19: Structure: ’shaft’, strategy #3. Result of 17 calls of stochastic walks performed in order to
find 15 unique tetrahedra that contain nodes of the coarse mesh (blue) from a determined range and
tetrahedra found in additional test (green) performed after a walk.

The procedure is repeated in case there are several destination points.

6 Jump and Walk

In [4] it is reported that supporting a walk algorithm with a jump to the starting tetrahedron is
beneficial. Thus, after presenting the features of a stochastic walk (SW#3) in previous sections the
impact of a selection of starting tetrahedron is described. In tests a shaft structure is used with two
meshes with 51k and 409k tetrahedra. The goal is to find 324 destination points that come from the
very coarse mesh of 800 tetrahedra.

The jump process is as follows. A random set of TetaJump tetrahedra is selected and distances
between selected tetrahedra and destination points are calculated. Thus, in the implementation used
in this report for each randomly selected tetrahedra a middle point of a simplex has to be calculated.
A starting tetrahedron is the tetrahedron which has the smallest distance (as the crow flies) between
its middle point and a destination point.

The influence of the number of randomly verified tetrahedra (TetaJump) in the jump phase is
presented in Tables 6 and 7 which gather data collected from executions of ’jump-and-walk’ with
different setups (TetaJump = {5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, 0.001%}).

The more tetrahedra selected in a jump phase (TetaJump) then the distance between a starting
tetrahedron and a destination point is shorter (Figs. 22-23) and as a result the number of steps in a
walk should decrease (however, it should be kept in mind that in non simply connected regions a small
distance may not guarantee a low number of steps). Moreover, Figure 21 shows the percentage share
of jump and walk phases depending on the number of TetaJump, which suggests that for the entire
localization algorithm is crucial to select an optimal balance between jump (number of TetaJump)
and walk (number of steps in walk) phases. For a mesh with 51k tetrahedra it is preferable to chose
a random set including 0.5% (256) tetrahedra in the jump phase. This selection guarantied both the

19

(a) Path

(b) destination point on a face

Figure 20: Structure: ’broken torus’, strategy #3. Stochastic walk from starting tetrahedron (green)
to tetrahedron that contains destination point (red) which lies on the face. Right figure visualize the
verification of neighbours (grey - the neighbour that has a common face on which lies the destination
point, blue - other neighbours).

Table 6: Statistics of a jump-and-walk algorithm for different setups of tetrahedra used in jump phase.
[Structure: shaft, no. of tetrahedra: 51200, Destination points 324, max_iters = 200]

Tetrahedra in Jump [%] 5 1 0.5 0.1 0.05 0.01 0.005 0.001
Jump [s] 0.84 0.18 0.09 0.03 0.02 0.24 0.03 0.06
Walk [s] 0.69 0.88 0.85 1.46 1.93 4.22 6.03 8.71

Jump and Walk [s] 1.53 1.06 0.94 1.49 1.95 4.46 6.07 8.76
Jump [%] 55% 17% 10% 2% 1% 5% 1% 1%
Walk [%] 45% 83% 90% 98% 99% 95% 99% 99%
TetaJump 2560 512 256 52 26 6 3 1

Tetrahedra in Walk (onPath) 3 6.8 8.4 19.3 27.6 66.3 97 143.6
Tetrahedra in Walk (Wrong) 0 0 0 1.9 4.4 19.9 34.1 56.7

Success 324 324 324 322 317 283 237 157
Failed 0 0 0 2 7 41 85 163

20

Table 7: Statistics of a jump-and-walk algorithm for different setups of tetrahedra used in jump phase.
[Structure: shaft, no. of tetrahedra: 409600, Destination points 324, max_iters = 200]

Tetrahedra in Jump [%] 5 1 0.5 0.1 0.05 0.01 0.005 0.001
Jump [s] 7.10 1.51 0.75 0.17 0.09 0.03 0.02 0.01
Walk [s] 1.71 2.42 2.32 2.64 2.88 4.06 4.92 7.53

Jump and Walk [s] 8.81 3.93 3.07 2.80 2.96 4.08 4.93 7.54
Jump [%] 81% 38% 24% 6% 3% 1% 0% 0%
Walk [%] 19% 62% 76% 94% 97% 99% 100% 100%
TetaJump 20480 4096 2048 410 205 41 21 5

Tetrahedra in Walk (onPath) 3 6.4 8.3 15.2 20.5 43.7 60.7 105.6
Tetrahedra in Walk (Wrong) 0 0 0 0.03 0.4 4.6 9.7 24.6

Success 324 324 324 324 323 315 302 242
Failed 0 0 0 0 1 9 22 80

Figure 21: Times taken by jump (blue) and walk (red) phases for different setups of tetrahedra used
in a jump phase. [Structure: ’shaft’ with 409k tetrahedra, walk: stochastic walk with strategy #3.]

minimal time of ’jump-and-walk’ and enabled to find all destination points. For a finer mesh with 409k
tetrahedra it occurred that the optimal choice is a selection of 0.1% (410) tetrahedra in the jump phase.
One may notice that with the decrease of the number of TetaJump (0.05% and less) the number of
failed walks grows1. Thus the jump-and-walk algorithm was modified in such a manner that in case
the walk fails then the jump phase is run again (with significantly higher number of randomly selected
tetrahedra) to select a better starting tetrahedron and walk is repeated. It is worth mentioning that
in this looped variant the maximal number of steps (max_steps) is significantly lower, since we know
that each step of walk is very time-consuming and we want to quickly verify if there is a need to
repeat the walk with a more favorably located starting tetrahedron. Figures 24 presents a comparison
of a ’jump-and-walk’ algorithm and looped ’jump-and-walk’ algorithm. The looped approach allowed
finding all destination points (tetrahedra) that were not found previously.

Tests performed for a ’cubeandspheres’ structure with 551k tetrahedra confirmed that 0.1% tetra-
hedra in a jump phase guaranties that all destination points are found in the shortest time.

1It is worth noting, that here the limiter max_steps was set very restrictive to only 200 steps, according to previous
section a stochastic walk (SW#3) enables to find a destination point in most of the cases, however, may require hundreds
of steps

21

(a) Tetrahedra in Jump = 5%

(b) Tetrahedra in Jump = 1%

(c) Tetrahedra in Jump = 0.5%

(d) Tetrahedra in Jump = 0.1%

Figure 22: Distances between middle points of starting tetrahedra and and destination points. Ran-
domly selected tetrahedra in a jump phase: TetaJump = {5%, 1%, 0.5%, 0.1%}.

22

(a) Tetrahedra in Jump = 0.05%

(b) Tetrahedra in Jump = 0.01%

(c) Tetrahedra in Jump = 0.005%

(d) Tetrahedra in Jump = 0.001%

Figure 23: Distances between middle points of starting tetrahedra and and destination points. Ran-
domly selected tetrahedra in a jump phase: TetaJump = {0.05%, 0.01%, 0.005%, 0.001%}.

23

(a) No. of tetrahedra: 51k

(b) No. of tetrahedra: 409k

Figure 24: Times taken by jump-and-walk and looped jump-and-walk algorithms for different setups
of tetrahedra used in jump phase. [Structure: ’shaft’, walk: stochastic walk with strategy #3.]

24

Above in this section, the case in which destination points are nodes of a coarse mesh was discussed.
Moreover, times presented in Tabs. 6-7 were total times of a walk phase. However, it is very important
to present performance for a case when destination points are not nodes of a mesh as well as distinguish
what is included in time of a walk phase. Figure 25 and Tabs. 8-9 present detailed times of a walk
phase obtained for jump setups that allow finding all destination points (TetaJums not higher than
0.1%). The time of a walk phase is a sum of times taken by the following steps:

1. ’Calc neighbours’ - a quest for neighbours of all tetrahedra 2,

2. ’Walk (SW#3)’ - a stochastic walk (SW#3),

3. ’After (Teta by Node)’ - a verification if the destination point is a node of a tetrahedron and if
it is true quest for other tetrahedra which also contain the destination point,

4. ’After (Teta by Neigh.)’ - a verification if a destination point lies on a face and if it is true quest
for other tetrahedra which also contain the destination point,

5. ’After (Teta unique)’ - a creation of unique set of tetrahedra found in 2-4 steps

One may observe that in a case where destination points are nodes of a coarse mesh then the most
time-consuming is step 3 (Fig. 25a, Tab. 8). It is due to the time-consuming search (in Teta array) to
verify which tetrahedra contain a destination point (node).

If destination points are not nodes3, then step 3 is inexpensive since there are only 4 checks if a
destination point is any of nodes of a tetrahedron (which contains a destination point). It can be seen
that time taken by a calculation of neighbours (step 1) cannot be neglected, however, a step (2) is the
most time-consuming (Fig. 25b, Tab. 9).

Table 10 presents times taken by jump-and-walk algorithms for two setups of destination points:
(A) destination points are nodes of a mesh, (B) destination points are not nodes of a mesh. It can be
seen that a walk phase is about 3 times shorter in case destination points are not nodes of a mesh. As
a result for the most optimal case (TetaJump=0.1%) a time taken by a jump-and-walk algorithm is
2.6 shorter (setup B over setup A).

2This step is performed with build-in Matlab functions: Teta_neighbours = neighbors(triangulation(Teta,Nodes));
3Here, destination points are slightly perturbed nodes of a coarse mesh.

Table 8: Times taken by a walk phase in a case that 324 destination points are nodes of a coarse mesh.

TetaJump 5% 1% 0.5% 0.1%
Calc neighbours [s] 0.24 12% 0.24 9% 0.24 9% 0.24 8%
Walk (SW #3) [s] 0.21 11% 0.36 14% 0.43 17% 0.75 26%
After (Teta by Node) [s] 1.39 71% 1.94 73% 1.78 69% 1.78 62%
After (Teta by Neigh.) [s] 0.09 4% 0.09 3% 0.09 3% 0.09 3%
After (Teta unique) [s] 0.02 1% 0.03 1% 0.03 1% 0.02 1%
Walk (SUM) [s] 1.95 100% 2.66 100% 2.56 100% 2.88 100%

Table 9: Times taken by a walk phase in a case that 324 destination points are not nodes of a coarse
mesh

TetaJump 5% 1% 0.5% 0.1%
Calc neighbours [s] 0.24 39% 0.24 32% 0.24 29% 0.24 22%
Walk (SW #3) [s] 0.28 45% 0.42 54% 0.48 59% 0.78 70%
After (Teta by Node) [s] 0.01 1% 0.01 1% 0.00 0% 0.00 0%
After (Teta by Neigh.) [s] 0.08 12% 0.08 10% 0.07 9% 0.07 6%
After (Teta unique) [s] 0.02 4% 0.02 3% 0.02 2% 0.02 2%
Walk (SUM) [s] 0.63 100% 0.76 100% 0.82 100% 1.11 100%

25

Figure 25: Times taken by steps in a walk phase for different setups of tetrahedra used in a jump phase
(DestPts = 324 Destination Points). [Structure: ’shaft’ with 409k tetrahedra, walk: stochastic walk
with strategy #3.]

Table 10: Times taken by jump-and-walk algorithms for two setups of destination points: (A) 324
destination points are nodes of a mesh, (B) 324 destination points are not nodes of a mesh. (Structure:
shaft, 409k tetrahedra)

Phase TetaJump 5% 1% 0.5% 0.1%
(A.1) Jump [s] 7.1 (76%) 1.51 (34%) 0.75 (21%) 0.17 (5%)
(A.2) Walk [s] 2.19 (24%) 2.9 (66%) 2.8 (79%) 3.12 (95%)
(A.3) Jump-and-Walk [s] 9.29 (100%) 4.42 (100%) 3.55 (100%) 3.29 (100%)
(B.1) Jump [s] 7.7 (92%) 1.55 (67%) 0.79 (49%) 0.17 (13%)
(B.2) Walk [s] 0.63 (8%) 0.76 (33%) 0.82 (51%) 1.11 (87%)
(B.3) Jump-and-Walk [s] 8.33 (100%) 2.32 (100%) 1.61 (100%) 1.28 (100%)

(B.1) vs. (A.1) 0.9 1.0 0.9 1.0
(B.2) vs. (A.2) 3.5 3.8 3.4 2.8
(B.3) vs. (A.3) 1.1 1.9 2.2 2.6

Table 11: Comparison of a jump-and-walk algorithms with a naive search of 324 tetrahedra (Structure:
shaft, 409k tetrahedra). Two setups of destination points: (A) 324 destination points are nodes of a
mesh, (B) 324 destination points are not nodes of a mesh. TetaJump = 0.1%.

(A) (B)
1 Time naive [s] 489.9 2251.6
2 Jump and Walk [s] 3.3 1.3
2.1 Jump (0.1%) [s] 0.17 0.17
2.2 Walk [s] 3.12 1.11

Speedup 149x 1755x

Table 11 presents a comparison of a jump-and-walk algorithm with a naive search of 324 tetrahedra

26

in a structure ’shaft’. Two setups of destination points are concerned in which 324 destination points
are nodes of a mesh (A) and 324 destination points are not nodes of a mesh (B). In both cases a
mesh has 409k tetrahedra. A reference (naive) search is a loop over all tetrahedra. If a currently
verified tetrahedron contains a destination point, then the loop is not continued, however, additional
verification is performed to check if the destination point is a node of a mesh or lies on a face. One may
notice that a jump-and-walk algorithm needs several seconds while a reference implementation needs
over 8 minutes and 38 minutes to locate 324 destination points for (A) and (B) setups, respectively.
The reason why reference times differ is the fact that for a setup (A) 75% destination points lie in
tetrahedra which have indices lower than 1000, as opposed to a setup (B) where 80% destination points
lie in tetrahedra which have indices higher than 1000. Thus, in the former case the loop over tetrahedra
breaks after a significantly lower number of iterations.

7 Conclusions

Walking (visibility and stochastic) algorithms are good for structures with simply connected regions.
Better effectiveness of the walk can be achieved thanks to utilization of strategies which helps to run
away from looped walks. It was presented that stochastic walk (SW#3) enables to find many (if not all)
destination points for structures with not simply connected regions, however, many steps are required.
Thus, in order to significantly reduce the number of expensive steps in a walk, it is preferable to support
the walk algorithm with an inexpensive verification of a relatively small number of tetrahedra (0.1%)
in a jump phase. With an optimal choice of the number of randomly selected tetrahedra the overhead
due to a jump phase is relatively inexpensive, and a jump-and-walk approach bear fruits in significant
reduction of the time (and steps) required to localize a point in a tetrahedral mesh.

References

[1] https://sourceforge.net/projects/netgen-mesher/files/netgen-mesher/6.
1-experimental/

[2] Devillers, Olivier, Sylvain Pion, and Monique Teillaud. "Walking in a triangulation." International
Journal of Foundations of Computer Science 13.02 (2002): 181-199.

[3] Soukal, Roman. "Walking location algorithms: technical report no. DCSE/TR-2010-03." (2010).

[4] Mücke, Ernst P., Isaac Saias, and Binhai Zhu. "Fast randomized point location without prepro-
cessing in two-and three-dimensional Delaunay triangulations." Computational Geometry 12.1-2
(1999): 63-83.

27

https://sourceforge.net/projects/netgen-mesher/files/netgen-mesher/6.1-experimental/
https://sourceforge.net/projects/netgen-mesher/files/netgen-mesher/6.1-experimental/

	Introduction
	Netgen
	Walking algorithms. Basic visibility and stochastic walk algorithms.
	Strategies how to improve the visibility and stochastic walk algorithms
	Strategy 1 - go to the first neighbour on the list
	Strategy 2 - go to the neighbour with minimum value of face orientation test
	Strategy 3 - go to the random neighbour

	Determine the set of destination points (tetrahedra)
	List of destination points (tetrahedra) to be found
	Coarse and fine mesh
	Range of nodes
	Destination point on a face of the tetrahedra

	Jump and Walk
	Conclusions

