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1. Formulation of the problem

Analyzed structure is star. Number of modes at the boundary is defined with the number M , but
the final size is m = −M : M ×2. For example if M = 3 then m = 14. Frequency band is defined with
number of frequency points nf , minimum frequency fmin and maximum frequency fmax. The original
model system of equation size is N and the reduced model size is n = nQ ·m where nQ is number of
subsequent block moments at subsequent expansion points.

The goal of this rep is to compare RBM, SAPOR and GM-MOR algorithms application to scattering
problem formulation based on the hybrid FEM and Mode matching method.

1.1. Problem construction

System of equations: GΨ = −jωµB

System matrix: G ∈ CN×N

Right side vector: B ∈ CN×m

Solution vector: Ψ ∈ CN×m

Reduced solution vector: Ψr ∈ Cn×m

Approximated solution vector: Ψ ≈ QΨr

Local real error: norm(QΨr −Ψ)/norm(Ψ)

Subsequent projection basis columns are constructed using block moments of Ψ expansion point at
specific frequencies to represent the evolution of electromagnetic field as a function of frequency. Next
expansion points are chosen using error estimator.

1.2. Scattered field

Original field: outE

MOR field: outEr

Far field error: max(outE − outEr)
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2. Computational optimization

The block matrix G is defined as:

G =

[
Gzz Gzt

Gtz Gtt

]
, (1)

where inner components depend on frequency variables k0 = 2πf and β = jk0cos(θ), where θ is a
angle of falling wave. Taking into account three frequency dependent cases and constructing of block
matrices results in:

Gzz(k
2
0) = Cs + k20Ts,

Gzt(β) = βGzt,

Gtz(β) = βGtz,

Gtt(k
2
0, β

2) = Cv + k20Tv + β2Gv.

(2)

Consider cos(θ) as constant and introduce s = jω/c. After that we can introduce cosθ as a component
of system matrices to obtain following formulation of problem:

GΨ = −jωµB,

G = s2T + sGtemp + C.
(3)

The construction of matrices C, T and Gtemp is organized as follows:

C =

[
Cs 0
0 Cv

]
,

T =

[
Ts 0
0 Tv + Gv · cos2(θ)

]
,

Gtemp =

[
0 Gzt · cos(θ)

Gtz · cos(θ) 0

]
.

(4)

At this moment we obtained frequency independent matrices with the same order N ×N . We can
now introduce error estimator given by:

e(f) = norm(BH/norm(B) · (GQΨ + jωµB)/norm(jωµB))

e(f) = norm(BHGQΨ + jωµBHB)/norm(jωµ)/norm(B)2)
(5)

Note that B is frequency independent, so BHCQ, BHTQ, BHGtempQ, BHB and norm(B) can be
computed before frequency sweep, which makes this estimator very fast operation on low order n× n
matrices. To evaluate the action of proposed error estimator, we have introduced the real local error
given by:

norm(|QΨr −Ψref |)/norm(Ψref ).

We have obtained good correlation between estimator and local real error. The results will be presented
in next sections. Additionally we have introduced impedance matrix error estimator:

norm(|Zr − Zref |)/norm(Zref ),

but similarly as in local real error, the reference is not available at the moment of random structure
computation. This comparisons may be useful at scientific research but not at industrial applications.
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3. Impedance matrix and solution vector Ψ observation

Impedance matrix and solution vector Ψ have the same core elements for M=5 at M=6. It means that
removing outer and inner columns of M=6, results in obtaining M=5. We can observe this occurence
at fig. 1. Additionally the element error relies on tolerance of simulation. The Z matrix error is lower
in contrary to Ψ error, which can be seen at report attachment.
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Figure 1: On the left: Black elements are elements obtained via RBM case and red circles are obtained
via reference. Comparison made at frequency vector present in projection basis.
On the right: Comparison of Z matrix elements. Comparison is made with reference matrices with
M=3 and M=10 obtained via RBM at M=3.
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4. Numerical Experiments

Experiments were performed with three input variables number of frequency subranges NF , number of
Hankel functions M and maximum number of block moments Qmax. Tests does not include mesh and
matrix generation. All tests were performed for 9-11 GHz band at nf = 801 points and tol = 1e− 4.

Table 1: Analysis result for M =3

n Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15 729 443 s 0 s 443 s 1 -
RBM 140 14.7 s 6.94 s 7.76 s 30.1 7.71e-6
SAPOR 182 22.2 14.24 s 7.96 s 19.9 6.93e-7
GM-MOR
NF = 10, Qmax = 10 154 18.5 s 10.7 s 7.8 s 23.9 1.03e-6
NF = 20, Qmax = 5 154 19 s 11.2 s 7.8 s 23.3 1.91e-6
NF = 40, Qmax = 2 154 18.9 s 11.1 s 7.8 s 23.4 1.86e-6

Table 2: Analysis result for M =5

n Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15 729 612 s 0 s 612 s 1 -
RBM 220 22.7 s 11.3 s 11.4 s 26.9 1.17e-7
SAPOR 242 32.3 20.8 s 11.5 s 18.9 2.18e-5
GM-MOR
NF = 10, Qmax = 10 198 26.8 15.6 11.3 22.8 6.50e-6
NF = 20, Qmax = 5 198 30.2 18.8 14.4 20.3 2.51e-6
NF = 40, Qmax = 2 198 27.6 16.4 11.2 22.2 5.61e-6

Table 3: Analysis result for M =10

n Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15 729 1120 s 0 s 1120 s 1 -
RBM 378 55.2 s 25.6 s 29.6 s 20.3 2.14e-5
SAPOR 378 77.4 s 47.6 s 29.8 s 14.5 4.25e-5
GM-MOR
NF = 10, Qmax = 10 336 67.2 38.5 28.7 16.7 3.09e-5
NF = 20, Qmax = 5 378 84.1 54.5 29.6 13.3 7.39e-7
NF = 40, Qmax = 2 378 84.7 54.9 29.8 13.2 1.10e-5
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