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1. Formulation of the problem

Analyzed structure is star. Number of modes at the boundary is defined with the number M , but
the final size is m = −M : M ×2. For example if M = 3 then m = 14. Frequency band is defined with
number of frequency points nf , minimum frequency fmin and maximum frequency fmax. The original
model system of equation size is N and the reduced model size is n = nQ ·m where nQ is number of
subsequent block moments at subsequent expansion points.

The goal of this rep is to compare RBM, SAPOR and GM-MOR algorithms application to scattering
problem formulation based on the hybrid FEM and Mode matching method.

1.1. Problem construction

System of equations: GΨ = −jωµB

System matrix: G ∈ CN×N

Right side vector: B ∈ CN×m

Solution vector: Ψ ∈ CN×m

Reduced solution vector: Ψr ∈ Cn×m

Approximated solution vector: Ψ ≈ QΨr

Local real error: norm(QΨr −Ψ)/norm(Ψ)

Subsequent projection basis columns are constructed using block moments of Ψ expansion point at
specific frequencies to represent the evolution of electromagnetic field as a function of frequency. Next
expansion points are chosen using error estimator.

1.2. Scattered field

Original field: outE

MOR field: outEr

Far field error: max(outE − outEr)
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2. Computational optimization

The block matrix G is defined as:

G =

[
Gzz Gzt

Gtz Gtt

]
, (1)

where inner components depend on frequency variables k0 = 2πf and β = jk0cos(θ), where θ is a
angle of falling wave. Taking into account three frequency dependent cases and constructing of block
matrices results in:

Gzz(k
2
0) = Cs + k20Ts,

Gzt(β) = βGzt,

Gtz(β) = βGtz,

Gtt(k
2
0, β

2) = Cv + k20Tv + β2Gv.

(2)

Consider cos(θ) as constant and introduce s = jω/c. After that we can introduce cosθ as a component
of system matrices to obtain following formulation of problem:

GΨ = −jωµB,

G = s2T + sGtemp + C.
(3)

The construction of matrices C, T and Gtemp is organized as follows:

C =

[
Cs 0
0 Cv

]
,

T =

[
Ts 0
0 Tv + Gv · cos2(θ)

]
,

Gtemp =

[
0 Gzt · cos(θ)

Gtz · cos(θ) 0

]
.

(4)

At this moment we obtained frequency independent matrices with the same order N ×N . We can
now introduce error estimator given by:

e(f) = norm(BH/norm(B) · (GQΨ + jωµB)/norm(jωµB))

e(f) = norm(BHGQΨ + jωµBHB)/norm(jωµ)/norm(B)2)
(5)

Note that B is frequency independent, so BHCQ, BHTQ, BHGtempQ, BHB and norm(B) can be
computed before frequency sweep, which makes this estimator very fast operation on low order n× n
matrices. To evaluate the action of proposed error estimator, we have introduced the real local error
given by:

norm(|QΨr −Ψref |)/norm(Ψref ).

We have obtained good correlation between estimator and local real error. The results will be presented
in next sections. Additionally we have introduced impedance matrix error estimator:

norm(|Zr − Zref |)/norm(Zref ),

but similarly as in local real error, the reference is not available at the moment of random structure
computation. Both definitions are used to judge validity of error estimator.
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3. Impedance matrix and solution vector Ψ observation

Impedance matrix and solution vector Ψ have the same core elements for M=3 at M=10. It means
that removing outer and inner columns of matrix for M=10, results in obtaining matrix for M=3. We
can observe this occurence at fig. 1. Additionally the element error relies on tolerance of simulation.
The Z matrix error is lower in contrary to Ψ error, which can be seen at report attachment.
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Figure 1: On the left: Black elements are elements obtained via RBM case and red circles are obtained
via reference. Comparison made at frequency vector present in projection basis.
On the right: Comparison of Z matrix elements. Reference matrices for M=3 and M=10 are compared
with obtained via RBM for M=3.

Blue line on the right plot corresponds to error between maximum absolute values of difference
between reference and RBM matrices for M=3. Red line is difference between reference matrices for
M=3 and M=10 reduced to M=3. Black, green and dashed red lines are error functions introduced in
section 1.1.

Following feature can be used to estimate real error based on far field. The estimation cost will be
slightly less than final sweep time.

4. PARDISO Solver optimization

This operation consists of five steps:

1. Analysis

2. Numerical factorization

3. Solve

4. Release internal memory for L and U

5. Release all internal memory for all matrices

For frequency sweep operation, step 1. should be made once, because position of nonzero elements is
not changing. Steps 2-4 are performed for every frequency point, but iparm and pt parameters obtained
at step 1 must be refreshed every time we start step 2. At the end of program, user should release all
internal memory using step 5. Solution times obtained for UMFPack and PARDISO procedures are
presented at table below.

Comparison have been made between UMF and PARDISO and is presented at 2. The difference is
at machine precision level until tolerance at 1e-10. Then PARDISO has an advantage over UMF what
can be seen at Ψ error and estimate lines.
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Table 1: Real symmetric N=200 232 unknowns, No. of iterations=11, nnz=0.18%

Full time Step 1 Step 2 Steps 3-5 Max. Err. Norm(x)
UMFPack (Ref) 16.3 s - - - - -
PARDISO 8.4 s 2.15 s 5.3 s 0.9 s 5.1e-9 284

Table 2: Complex symmetric N=45 000 unknowns, No. of iterations=11, nnz=0.048%

Full time Step 1 Step 2 Steps 3-5 Max. Err. Norm(x)
UMFPack (Ref) 161 s - - - - -
PARDISO 3.3 s 0.4 s 2.5 s 0.4 s 7.1e-5 122.7

Table 3: Hermitian (analyzed type) N=177981 unknowns, No. of iterations=11, nnz=0.013%

Full time Step 1 Step 2 Steps 3-5 Max. Err. Norm(x)
UMFPack (Ref) 55.2 s - - - - -
PARDISO 5.8 s 1.1 s 3.8 s 0.9 s 4.6e-14 1.91
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Figure 2: Comparison of PARDISO and UMFPack solvers at steps: 13 and 8.
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5. Numerical Experiments

Experiments were performed with three input variables number of frequency subranges NF , number
of Hankel functions M and maximum number of block moments Qmax. Tests does not include mesh
and matrix generation. Two cases were taken into account, one with ca. 16000 and second with ca.
177000 unknowns. Blue row is slowest case, red is fastest with Gram-Schmidt algorithm, and light
red is fastest overall (RBM with SVD algorithm).

5.1. Band 9-11 GHz, 801 points, tolerance 1e-4, N=15729

Table 4: Analysis result for M =3

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15729 49.2 s 0 s 49.2 s 1 -
SAPOR 182 (13) 16.5 s 8.6 s 7.9 s 2.98 6.9e-7
GM-MOR
NF = 10, Qmax = 10 140 (10) 15 s 7.3 s 7.7 s 3.28 7.9e-5
NF = 20, Qmax = 5 151 (11) 17.2 s 9.4 s 7.7 s 2.86 5.9e-7
NF = 40, Qmax = 2 154 (11) 17.6 s 9.8 s 7.8 s 2.79 2.6e-6
RBM 140 (10) 15.1 s 7.4 s 7.7 s 3.26 8.1e-6
RBM (SVD) 140 (10) 13.3 s 5.6 s 7.6 s 3.7 9.9e-6

Table 5: Analysis result for M =5

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15729 61.6 s 0 s 61.6 s 1 -
SAPOR 242 (11) 22.8 s 11.2 s 11.5 s 2.7 2.2e-5
GM-MOR
NF = 10, Qmax = 10 197 (9) 24.2 s 13 s 11.2 s 2.55 6.4e-6
NF = 20, Qmax = 5 216 (10) 27.8 s 16.4 s 11.4 s 2.21 3.2e-6
NF = 40, Qmax = 2 198 (9) 25.9 s 14.7 s 11.2 s 2.38 6.1e-5
RBM 198 (9) 23.4 s 12 s 11.4 s 2.63 9.9e-5
RBM (SVD) 220 (10) 21.6 s 9.9 s 11.7 s 2.85 5.1e-7

Table 6: Analysis result for M =10

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15729 95.9 s 0 s 95.9 s 1 -
SAPOR 378 (9) 52.9 s 23.3 s 29.6 s 1.81 4.2e-5
GM-MOR
NF = 10, Qmax = 10 378 (9) 70.7 s 41 s 29.6 s 1.36 4.9e-5
NF = 20, Qmax = 5 373 (9) 78.1 s 48.4 s 29.7 s 1.23 6.9e-5
NF = 40, Qmax = 2 373 (9) 79.9 s 50.3 s 29.6 s 1.2 1.8e-5
RBM 294 (7) 50.6 s 22.3 s 28.2 s 1.89 3.2e-5
RBM (SVD) 294 (7) 42.3 s 13.2 s 29.1 s 2.27 3.2e-5
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5.2. Band 7-13 GHz, 1201 points, tolerance 1e-4, N=15729

Table 7: Analysis result for M =3

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15729 73.8 s 0 s 73.8 s 1 -
SAPOR 280 (20) 44.7 s 30.3 s 14.4 s 1.65 3.1e-5
GM-MOR
NF = 10, Qmax = 10 250 (18) 39.1 s 26.3 s 12.8 s 1.88 2.9e-5
NF = 20, Qmax = 5 235 (17) 37.2 s 24.5 s 12.7 s 1.98 3.8e-6
NF = 40, Qmax = 2 224 (16) 35.9 s 23.3 s 12.6 s 2.06 9.4e-5
RBM 224 (16) 35.8 s 23.1 s 12.6 s 2.06 1.2e-5
RBM (SVD) 224 (16) 32.9 s 19.7 s 13.1 s 2.24 1.2e-5

Table 8: Analysis result for M =5

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15729 92.4 s 0 s 92.4 s 1 -
SAPOR 374 (17) 71 s 49.1 s 21.9 s 1.3 3.1e-5
GM-MOR
NF = 10, Qmax = 10 330 (15) 59 s 38.9 s 20.1 s 1.57 5.6e-5
NF = 20, Qmax = 5 329 (15) 69.1 s 48.9 s 20.2 s 1.34 4.8e-6
NF = 40, Qmax = 2 308 (14) 63.8 s 44 s 19.7 s 1.45 1.9e-5
RBM 286 (13) 51.8 s 32.6 s 19.2 s 1.78 3.9e-5
RBM (SVD) 286 (13) 46.1 s 26.5 s 19.6 s 2 1.2e-5

Table 9: Analysis result for M =10

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 15729 143.8 s 0 s 143.8 s 1 -
SAPOR 588 (14) 155 s 100 s 55.1 s 0.93 4.9e-5
GM-MOR
NF = 10, Qmax = 10 561 (14) 178 s 125 s 53.4 s 0.81 3.4e-5
NF = 20, Qmax = 5 539 (13) 167 s 115 s 51.9 s 0.86 5.7e-6
NF = 40, Qmax = 2 578 (14) 219 s 165 s 54.5 s 0.66 4.1e-6
RBM 546 (13) 170 s 117 s 53.2 s 0.85 5.7e-5
RBM (SVD) 504 (12) 122 s 70.7 s 51.5 s 1.18 6.5e-5
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5.3. Band 9-11 GHz, 801 points, tolerance 1e-4, N=177981

Table 10: Analysis result for M =3

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 177981 562 s — 562 s — —
SAPOR 154 (11) 47.1 s 39.4 s 7.7 s 11.9 6e-5
GM-MOR
NF = 10, Qmax = 10 151 (11) 95 s 87.3 s 7.7 s 5.92 2.1e-7
NF = 20, Qmax = 5 140 (10) 80.2 s 72.6 s 7.6 s 7 1.1e-5
NF = 40, Qmax = 2 — — — — — —
RBM 140 (10) 65.3 s 57.6 s 7.6 s 8.61 4.6e-5
RBM (SVD) 140 (10) 44.4 s 36.6 s 7.7 s 12.66 4.6e-5

Table 11: Analysis result for M =5

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 177981 650 s — 650 s — —
SAPOR 220 (10) 70.5 s 59.2 s 11.3 s 9.22 4.3e-5
GM-MOR
NF = 10, Qmax = 10 176 (8) 105.6 s 94.5 s 11 s 6.15 3.8e-5
NF = 20, Qmax = 5 198 (9) 147.2 s 135.9 s 11.3 s 4.41 6.9e-6
NF = 40, Qmax = 2 198 (9) 158.5 s 147.1 s 11.3 s 4.1 1.3e-5
RBM 176 (8) 89.6 s 78.6 s 11 s 7.25 1.1e-5
RBM (SVD) 176 (8) 48.2 s 37 s 11 s 13.5 1.1e-5

Table 12: Analysis result for M =10

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 177981 864 s — 864 s — —
SAPOR 378 (9) 154 s 125 s 29.5 s 5.61 1.2e-5
GM-MOR
NF = 10, Qmax = 10 378 (9) 427 s 397 s 29.4 s 2.02 6.7e-7
NF = 20, Qmax = 5 378 (9) 475 s 445 s 29.8 s 1.82 1.9e-6
NF = 40, Qmax = 2 403 (10) 611 s 580 s 30.6 s 1.41 3.7e-7
RBM 378 (9) 329 s 299 s 29.6 s 2.63 8e-5
RBM (SVD) 336 (8) 111 s 82 s 29 s 7.78 3.7e-5
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5.4. Band 7-13 GHz, 1201 points, tolerance 1e-4, N=177981

Table 13: Analysis result for M =3

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 177981 844 s — 844 s — —
SAPOR 308 (22) 144 s 129 s 15 s 5.86 4.6e-5
GM-MOR
NF = 10, Qmax = 10 246 (18) 224 s 212 s 12.7 s 3.77 4.2e-7
NF = 20, Qmax = 5 233 (17) 219 s 206 s 12.6 s 3.85 4.7e-6
NF = 40, Qmax = 2 — — — — — —
RBM 224 (16) 150 s 138 s 12.4 s 5.63 1.7e-5
RBM (SVD) 210 (15) 92 s 79 s 12.2 s 9.17 6e-5

Table 14: Analysis result for M =5

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 177981 975 s — 975 s — —
SAPOR 462 (21) 250 s 226 s 24.6 s 3.9 3.9e-5
GM-MOR
NF = 10, Qmax = 10 352 (16) 395 s 375 s 20.6 s 2.47 4.4e-5
NF = 20, Qmax = 5 313 (15) 368 s 348 s 19.8 s 2.65 5.5e-6
NF = 40, Qmax = 2 308 (14) 368 s 349 s 19.8 s 2.65 6.7e-5
RBM 308 (14) 247 s 228 s 19.6 s 3.95 4.4e-5
RBM (SVD) 308 (14) 142 s 122 s 20 s 6.87 9.2e-6

Table 15: Analysis result for M =10

n(nQ) Full time MOR time Sweep Time Speedup Max. Est.
Original formulation 177981 1296 s — 1296 s — —
SAPOR 630 (15) 381 s 323 s 57.6 s 3.4 4.7e-5
GM-MOR
NF = 10, Qmax = 10 558 (14) 999 s 947 s 53 s 1.3 5.1e-5
NF = 20, Qmax = 5 543 (13) 928 s 876 s 52 s 1.4 9.4e-5
NF = 40, Qmax = 2 529 (13) 1072 s 1020 s 52 s 1.2 7.9e-5
RBM 504 (12) 589 s 539 s 50 s 2.2 4.9e-5
RBM (SVD) 546 (13) 324 s 270 s 53 s 4 1.6e-5
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5.5. Summary

Big times obtained with GM-MOR algorithm are caused many Gram-Schmidt operations. For the case
with total time ca. 1100 s, GS operation take ca. 900 s. Now take into account M = 5, NF = 10,
Qmax = 10 and both analyzed bandwidths.

Table 16: Analysis result for M =5, NF = 10, Qmax = 10

Band Problem size Full time MOR time GS time Estimate Time
9-11 177981 106 s 95 s 78 s 2.5 s
7-13 177981 395 s 375 s 325 s 15.2 s
9-11 15729 24.2 s 13 s 8 s 3.7 s
7-13 15729 59 s 49.1 s 23 s 14 s

As presented in table 16. the biggest time is Gram-Schmidt operation. It is caused by many right
hand sides, which are determined by M parameter. Additionally, when moving to the next frequency
point, re-orthogonalization of additional vector with current base is necessary, which is also a factor
that increases total time.

Results shown that currently fastest algorithm for following case is RBM with SVD algorithm.
However, suggestion is to take a look into orthogonalization process.
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