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1 Introduction

• We consider the 5-th order waveguide filter divided into 7 subdomains - the analyzed geometry
as well as the segmentation are shown in Fig. 1.

• 11 geometry parameters are defined: 2, 2, 3, 2, 2 in Ω2, Ω3, Ω4, Ω5, Ω6, respectively. The mesh
is deformed locally within subdomains, while mesh deformation technique based on triharmonic
radial basis functions was used. The initial values of all parameters and the range of allowable
parameter variations are shown in Table 2.

domain parameter Initial (mm) Min (mm) Max (mm)
Ω2 d1 2.000 1.000 3.000

R1 12.188 10.188 14.188
Ω3 h1 5.456 2.450 8.450

w1 2.430 1.430 5.430
Ω4 W 27.805 26.805 28.805

L1 12.194 8.194 16.194
L2 16.743 12.743 20.743

Ω5 h2 5.949 2.949 8.949
w2 2.430 1.430 5.430

Ω6 d2 2.000 1.000 3.000
R2 12.264 10.264 14.264

Table 2: Initial values of geometry parameters and variation range

• The frequency bandwidth of interest is 9-11 GHz.

• Figures 2 and 3 show the Z and S parameters of the filter.

• There are 5 resonant frequencies of the filter in the frequency band of interest (in GHz):

filter eigenresonances (GHz)
9.7658
9.8120
9.9450
10.0758
10.1578
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Figure 1: Geometry of the 5th order waveguide filter.
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Figure 2: Scattering parameters.
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Figure 3: Impedance.

2 Non-physical solutions

The problem of non-physical solutions occurs when geometry model-order reduction is applied. In order
to show the behaviour of the spurious eigenmodes and present schemes of identifying them, we analyse
the waveguide filter shown in Fig. 1 and apply geometry model order reduction in one subdomain
Ω5. The rest of the computational domain was subject to standard local model order reduction with
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parameter G1 G2 G3 G4

h2 [mm] -2.3 -2.39 -1.64 -2.23
w2 [mm] 1.39 -1.28 -2.45 1.1

Table 3: Change in geometry parameters in Ω5, G1, G2, G3, G4 - geometry instances used to generate
projection basis

frequency as parameter. Parametrized projection basis QP contained vectors of 4 different bases
associated with 4 different geometries of subdomain Ω5.

After applying the parametric model order reduction in Ω5 with basis QP and solving the problem
we get the filter response shown in the Figures 4 and 5. Spurious resonances can be seen in the
scattering parameters plot as well as in the impedance plot.

Solution of the eigenproblem brings about the 11 eigenresonances in band of analysis (see Table
4): 5 true and 6 spurious.
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Figure 4: Scattering parameters with spurious modes.
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Figure 5: Impedance with spurious modes.
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eigenresonances (global) [GHz]
9.6113
9.7185
9.7659
9.8120
9.9449
10.0690
10.1102
10.1643
10.3515
10.4829
10.6994

Table 4: Eigenresonances of the structure - spurious (normal font) and true (bold font)

2.1 Analysis of spurious modes in macromodel

Reduced FE matrices consist of small and dense blocks (macromodels) and have sparsity pattern
shown in Fig. 6. The behaviour of the electromagnetic field in subdomain Ω5 is determined by the
local system of equations:

(ΓΩ5 − k2CΩ5) ·EΩ5 = −(GδΩ5 − k2TδΩ5) ·EδΩ5 (1)

where GδΩ5 and TδΩ5 are blocks describing the coupling between subregion Ω5 and interfaces S4,
S5, EΩ5 contains coefficients associated with FE basis functions in Ω5 and EδΩ5 contains coefficients
associated with FE basis functions in the boundary δΩ5 = {S4, S5}.

Model order reduction results in the reduced system of equations:

(Γ̃Ω5 − k2C̃Ω5) · ẼΩ5 = −(G̃δΩ5 − k2T̃δΩ5) ·EδΩ5 (2)

Figure 6: Sparsity pattern of the reduced matrix Γ̃.

Solving the reduced generalized eigenproblem

(Γ̃Ω5 − k2
i C̃Ω5) · ṽi = 0 (3)

results in the eigenresonanses fi = c·ki/(2π) of the macromodel and the corresponding eigenvectors
ṽi.

In this example, we get 6 eigenresonanses of macromodel Ω5 (all of them are spurious). Note, that
these values are similar to spurious frequencies of the global model in Table 4.
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eigenresonances in Ω5 [GHz]
9.6120
9.7206
10.1111
10.3513
10.4797
10.6993

Table 5: Eigenresonances of macromodel in Ω5

If we remove all these spurious eigenresonances from the projection basis (i.e. via deflation) we
obtain 5 true resonances in band: 9.7658 GHz, 9.8120 GHz, 9.9453 GHz, 10.0767 GHz, 10.1590 GHz
and smooth filter response (see Figures 7 and 8). The comparison of the local estimated error of the
macromodel [1] containing spurious modes and the macromodel after deflation (after removing spurious
eigenmodes from the projection basis) is shown in Fig. 9.

The crucial issue is to automatically identify, which eigenresonance is spurious. In the next sub-
sections different schemes of identifying spurious modes are described.
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Figure 7: Scattering parameters after deleting spurious modes.
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Figure 8: Impedance after deleting spurious modes.
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Figure 9: Local error estimator before and after deflation.

2.2 Residual errors of eigenvalue problem

If the quality of the projection basis is good, eigenvectors of the reduced-order model are good approx-
imation of the eigenvectors of the original model and they should give value equal to zero (or close to
zero) of the residual error (4):

R =‖ (ΓΩ5 − k2
iCΩ5) ·Qṽi ‖2 (4)

On the other hand, spurious modes are not the solution of the original eigenproblem so they should
give high value of the residue. Residual errors for six eigenvectors are shown in Table 6 - all values are
about 0.1.

eigenfrequency [GHz] Residue
9.6120 0.0883
9.7206 0.0895
10.1111 0.1206
10.3513 0.0994
10.4797 0.1030
10.6993 0.0997

Table 6: Values of residual errors of local eigenproblem in Ω5

2.3 Perturbation analysis

We use Bauer-Fike theorem to compute the bound of the shift of eigenvalues when FE matrices undergo
a defined perturbation. Firstly, FE matrices are diagonalized by means of the procedure described in
2.3.1. The sparsity pattern of the FE matrices after diagonalization procedure is shown in Fig. 10.

We define:

• the pair (Γ̃0, C̃0), where Γ̃0, C̃0 are strictly diagonal, with eigenvalues and eigenvectors (λ0i ,
x0i);

• perturbation matrices are coupling matrices (see Fig. 11);

• matrices containing perturbation (Γ̃, C̃) with corresponding λi.
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Figure 11: (a) Sparsity pattern of matrices Γ̃0, C̃0. (b) Sparsity pattern of coupling matrices (pertur-
bation matrices).

Error bound ∆λi(est) for i-th eigenvalue in Bauer-Fike theorem [2] is defined

|λ̃i − λi| ≤ ∆λi(est) =‖ C̃−1 ‖ · ‖ r ‖, (5)

where ‖ r ‖ is a norm of the residual vector

‖ r ‖= (Γ̃− λ0iC̃) · x0i , (6)

λ0i is the eigenvalue of the reduced local eigenproblem with diagonal matrices (Γ̃0, C̃0), λi is the
eigenvalue of the local eigenproblem with perturbation (Γ̃, C̃) and x0i is the eigenvector associated
with i-th eigenvalue λ0i .

In our case, matrices (Γ̃0, C̃0) are strictly diagonal (they do not contain coupling matrices) while (Γ̃,
C̃) are matrices with coupling blocks. Small values of ∆λi(est) are associated with spurious resonances
since they do not shift significantly (they are not excited). Since ‖ C̃−1 ‖ is the same for all eigenvalues,
observation of ‖ r ‖ is enough to determine if resonance is true or spurious.

2.3.1 Converting the FE system into symmetric eigenproblem

Symmetrization procedure of the local non-symmetric eigenvalue problem defined in equation (3) is

described below. Initially, we compute C̃
1
2
Ω5

via the eigendecomposition of matrix Γ̃Ω5 :

C̃Ω5 = VΛVT , (7)

C̃
1
2
Ω5

= VΛ
1
2 VT . (8)
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Similarly, C̃
− 1

2
Ω5

is:

C̃
− 1

2
Ω5

= VΛ−
1
2 VT . (9)

Then, we multiply equation (2) by C̃
− 1

2
Ω5

which results in the following form:

(C̃
− 1

2
Ω5

Γ̃Ω5C̃
− 1

2
Ω5

C̃
1
2
Ω5
− k2IC̃

1
2
Ω5

) · ẼΩ5 = −(C̃
− 1

2
Ω5

G̃δΩ5 − k2C̃
− 1

2
Ω5

T̃δΩ5) ·EδΩ5 , (10)

(C̃
− 1

2
Ω5

Γ̃Ω5C̃
− 1

2
Ω5
− k2I) · C̃

1
2
Ω5

ẼΩ5 = −(C̃
− 1

2
Ω5

G̃δΩ5 − k2C̃
− 1

2
Ω5

T̃δΩ5) ·EδΩ5 , (11)

where I is identity matrix. We rewrite the equation (11) in a form:

(A− k2I) · C̃
1
2
Ω5

ẼΩ5 = −D(k) ·EδΩ5 , (12)

where A is symmetric matrix
A = C̃

− 1
2

Ω5
Γ̃Ω5C̃

− 1
2

Ω5

and D is the right-hand side of the symmetric problem (11)

D(k) = C̃
− 1

2
Ω5

G̃δΩ5 − k2C̃
− 1

2
Ω5

T̃δΩ5 . (13)

Now, we compute eigenvalues λi and eigenvectors vi of the symmetric problem (14):

(A− k2I) ·VS = 0, (14)

A = C̃
− 1

2
Ω5

Γ̃Ω5C̃
− 1

2
Ω5
,

VS = C̃
1
2
Ω5

ẼΩ5 .

We perform the eigendecomposition of the symmetric matrix A = C̃
− 1

2
Ω5

Γ̃Ω5C̃
− 1

2
Ω5

and convert the
equation (12):

(VAΛAVT
A − k2I) · C̃

1
2
Ω5

ẼΩ5 = −D ·EδΩ5 , (15)

VA(ΛA − k2VT
AIVA) ·VT

AC̃
1
2
Ω5

ẼΩ5 = −D ·EδΩ5 , (16)

(ΛA − k2I) ·VT
AC̃

1
2
Ω5

ẼΩ5︸ ︷︷ ︸
ÊΩ5

= −VT
AD ·EδΩ5 , (17)

Figure 12: Sparsity pattern of the reduced matrix Γ̃ with diagonalized macromodel Ω5
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3 Numerical results

3.1 Test 1: parametric model order reduction in 5 subdomains: Ω2, Ω3, Ω4, Ω5, Ω6

Applying geometry model order reduction in 5 subdomains of the waveguide filter shown in Fig. 1
resulted in 19 resonances in frequency band of analysis (5 true and 14 spurious) - see Table 7. Bases
associated with 2, 3, 3, 3, 2 geometries were used in subdomains Ω2, Ω3, Ω4, Ω5, Ω6, respectively.
Frequency response of the filter is shown in Fig. 13.

eigenresonances (global) [GHz]
9.7660
9.8123
9.9453
10.0760
10.1579
9.0405
9.1134
9.3488
9.6035
10.0845
10.6862
10.8953
9.3271
10.4640
9.5076
10.0020
10.6363
10.7804
9.7664

Table 7: Eigenresonances of the structure - spurious (normal font) and true (bold font)
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Figure 13: Filter response with spurious modes
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Figure 14: Local estimated error in subdomain Ω4 after removing two spurious modes from the ROM
compared to estimated error before deflation

3.2 Analysis of spurious modes in macromodels

Table 3.2 shows true eigenfrequencies in band for each of 5 analysed macromodels as well as eigenfre-
quencies computed for the reduced order model obtained by means of geometry model order reduction.
There is only one true resonanse in Ω4. Note, that spurious modes of macromodels are approximately
the same as spurious modes of global model in Table 7.

Ω2 Ω3 Ω4 Ω5 Ω6

true fres [GHz] - - 9.9716 - -
true+spurious fres [GHz] 9.7663 9.5076 9.3271 9.0405 -

(computed for 10.0020 9.9716 9.1134
parameterized 10.6363 10.4640 9.3488
macromodel) 10.7804 9.6037

10.0844
10.6862
10.8952

Table 8: Eigenresonances of 5 local models - Ω2, Ω3, Ω4, Ω5, Ω6

In Table 9 residual errors for true and spurious resonances in subdomain Ω4 are compared. Since
the projection basis is good enough and allows to approximate the true eigenvector of the original
model accurately, associated residue is small (2.49e-05). Two spurious modes are not the solution of
the original model, so corresponding residual errors are much higher. Figure 14 shows local estimated
error in subdomain Ω4 after removing two spurious modes from the ROM compared to estimated error
before deflation.

eigenresonance [GHz] residual error
9.3271 0.0918
9.9716 2.49e-05
10.4640 0.1089

Table 9: Residual errors for eigenvectors in Ω4

Residues defined in (4) and (6) were computed for all eigenresonances in subdomains Ω2, Ω3, Ω4,
Ω5 - see Figures 16 and 15.

Estimated local error in Ω2, Ω3, Ω4, Ω5 and Ω6 is shown in Fig. 17.
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Figure 15: Residues for eigenvalues of the local ROMs (6).
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Figure 16: Residues for eigenvalues of the local ROMs (4).
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Figure 17: Local estimated error in 5 macromodels.
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Figure 18: Filter response after deleting spurious modes

Eigenresonances in band after deleting spurious modes in macromodels (in GHz): 9.7660, 9.8123,
9.9453, 10.0761, 10.1579.

3.3 Test 2: Wideband analysis with GMOR in Ω4

In order to obtain results with numerous true resonances in band, wideband analysis was performed.
Frequency band of interest was from 7 to 11 GHz. Geometry model order reduction was applied in Ω4.
Parametrized projection basis QP contained vectors of 3 different bases associated with 3 different
geometries of subdomain Ω4.

Solution of the local eigenvalue problem resulted in 18 resonances, while 3 of them were true.
Associated residual errors defined in eq. (4) and (6) are shown in Fig.

Fig. 22 shows local estimated error.
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Figure 19: Scattering parameters in frequency band 7-11 GHz.
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Figure 21: Residues for eigenvalues of the local ROM (6).
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Figure 22: Local estimated error.

Scattering parameters after deflation are presented in Fig. 23.
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Figure 23: Scattering parameters for the ROM after deflation.

3.4 Dual-mode filter

• The analysed structure segmented into 5 subdoamains is shown in the Fig. 24.

• Two subdomains – Ω2 and Ω4 – are subject to geometry modification – lengths of the tuning
screws are modified.

• Frequency band of interest – 11.4 - 12.4 GHz.

• 4 resonant frequencies of the filter in the frequency band of interest (in GHz):

filter eigenresonances (GHz)
11.7546
11.7987
11.8801
11.8828

Ω1 Ω2 Ω3 Ω4 Ω5

Figure 24: Dual-mode filter segmented into 5 subdomains.

Firstly, PMOR was applied only in Ω4. Parametrized projection basis QP consisting of three local
bases: QP = SVD([[Q1, Q2, Q3]]) was used, while {Q1, Q2, Q3} are bases computed for three
different geometries of Ω4. This resulted in spurious resonances of the ROM what might be observed
in the frequency response depicted in Fig. 25.

The basis QP consisted of 1701 vectors, basis compression reduced the number of vectors to 355.
Local ROM contains only 2 actual eigenvalues in band of interest. Projection using parametrized

basis QP produced 6 additional spurious eigenvalues - see Fig. 26. This results in 6 spurious eigenvalues
in global ROM (Fig. 27).

In order to automatically identify and deflate spurious modes from the local ROM, local estimated
error needs to be evaluated. Local estimated error of the ROM in Ω4 is shown in Fig. 28. Mean value
of the local error is -60 dB, which means that the macromodel is accurate enough.
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Figure 25: Scattering parameters computed with FEM-PMOR technique – the effect of spurious modes
in band.
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Figure 26: Eigenvalues of the local ROM in Ω4 obtained using accurate projection basis (Q0), single
point parametrized projection basis (Q1), 2-point parametrized projection basis [Q1, Q2] and 3-points
parametrized projection basis [Q1, Q2, Q3].

Next, the residue defined in eq. (6) are computed. The residue associated with spurious resonances
should be small, while residue of the actual resonance should be higher. Residues computed for all
eigenvalues in band of analysis are shown in Fig. 29. From the Fig. 29 it is apparent, that there are
six spurious resonances with residues below 1e-2 and those should be deflated. The same resonances
are identified as spurious using another criterion - the residue defined in 4 - see Fig. 30.

However, we might also observe the residues of eigenvalues out of band. – Fig. 31 shows residues
of all eigenvalues of the local ROM. Based on the residues for all eigenvalues, 27 resonances have been
identified as spurious (all resonances with residues below the dashed line in Fig. 31). Scattering param-
eters computed for the deflated reduced-order model are presented in Fig. 32 – good agreement with
accurate filter response is obtained. There is no spurious resonances in band. Computing resonances
of the global model gave only 4 resonances in band.
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Figure 27: Eigenvalues of the global ROM - when using parametrized projection basis [Q1, Q2] and
[Q1, Q2, Q3] spurious modes appear in the ROM.
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Figure 28: Local estimated error of the ROM in Ω4.
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Figure 29: Residues (6) for eigenvalues of the ROM in frequency band of analysis.17
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Figure 30: Residues (4) for eigenvalues of the ROM in frequency band of analysis.
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Figure 31: Residues for all eigenvalues of the ROM - 27 eigenvalues below the dotted line have been
displaced (deflated) from the local ROM.
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Figure 32: Scattering parameters obtained for deflated ROM – good agreement with accurate results
and no spurious modes in frequency band of analysis.

References

[1] G. Fotyga, K. Nyka, and M. Mrozowski, “Automatic Reduction Order Selection for Finite-Element
Macromodels,” 2017, submitted for publication.

[2] L. Hogben, Handbook of linear algebra. CRC Press, 2006.

19


