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1 Introduction

The behavior of the electromagnetic field in subdomain Ωi is described by the local system of equations:

(ΓΩi − k2CΩi) ·EΩi = −(GδΩi
− k2TδΩi

) ·EδΩi
(1)

where GδΩi
and TδΩi

are blocks that couple the subregion Ωi and the artificial boundary δΩi, EΩi

is associated with FE basis functions in Ωi and EδΩi
contains coefficients associated with FE basis

functions on the boundary δΩi.
Here we can define a local transfer function that describes the input-output behavior in subdomain

Ωi:

HΩi(k) = −(GT
δΩi
− k2TT

δΩi
) · (ΓΩi − k2CΩi)

−1 · (GδΩi
− k2TδΩi

) (2)

Note that the poles of the local transfer function defined above are the same as the eigenvalues of
the matrix pencil (ΓΩi ,CΩi).

Next, local model order reduction is applied. The projection space Q is found and the Galerkin
projection is applied to the system 1. Model order reduction results in the reduced system of equations:

(Γ̃Ωi − k2C̃Ωi) · ẼΩi = −(G̃δΩi
− k2T̃δΩi

) ·EδΩi
, (3)

where

Γ̃Ωi = QTΓΩiQ,

C̃Ωi = QTCΩiQ,

G̃δΩi
= QTGδΩi

,

T̃δΩi
= QTTδΩi

,

EΩi = QẼΩi . (4)

The reduced form of the local tranfer function H̃Ωi is defined as follows:

H̃Ωi(k) = −(G̃T
δΩi
− k2T̃T

δΩi
) · (Γ̃Ωi − k2C̃Ωi)

−1 · (G̃δΩi
− k2T̃δΩi

) (5)

The local projection basis Q is computed using approach described in [1]. In this report the results
of analysis using parametrized model order reduction are shown. The simulation scheme is as follows:

• The projection basis Q0 is generated for the starting (initial) set of design parameters p0.

• New set of design parameters p is chosen and mesh is deformed.

• Projection basis Q0 is used to solve for the new geometry instead of generating a new one from
scratch.

• The projection basis is modified by adding new vectors to the projection space: V representing
accurate poles of the local transfer function defined in (2) and S representing field solution of
the local system of equation at the specified frequency (1). As a result, the local projection basis
Qp is created which is composed of three parts:

Qp = [Q0,V,S]. (6)

2 Results

Two numerical examples were considered - dual mode waveguide filter and 5th order waveguide filter
with dispersive couplings. Both narrowband and wideband analyses have been made.
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2.1 Dual mode circular waveguide filter - narrowband analysis

S1 S2 S3 S4

P1
P2

Figure 1: Structure of the filter and segmentation scheme

The structure was partitioned into 5 macroelements: Ω1, Ω2, Ω3, Ω4, Ω5 and 2 ports and 4 cross-
sections: P1, P2, S1, S2, S3, S4 as depicted in Fig. 1.

The number of unknowns in ports and cross-sections was reduced by applying the modal projection
technique. The number of modes used for modal projection is shown in Table 2.

interface
number of modes
TE TM

P1 2 2
P2 2 2
S1 24 17
S2 24 17
S3 24 16
S4 24 17

Table 2: Number of modes used for the modal projection on ports.

Initial results with PMOR

Figure 2 shows the scattering parameters computed when initial parametrized local ROMs were applied.
In all of three macromodels, the single projection basis was used. There is also the actual error of the
analysis defined as: |SPMOR−SMP |, where SMP stands for the scattering parameters computed prior
to the reduction process (and after applying the modal projection on ports) and SPMOR is the result
of the analysis using PMOR.

Values of the parameter set under analysis (p) as well as values of parameters p0 that were used
to construct the initial projection basis Q0 are given in Table 3 .
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Figure 2: Results of the analysis with the initial ROMS.
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Table 3: Values of design parameters for initial design p0 and for the analysed design p.

domain variable p0 (mm) p (mm)

Ω2
l1 2.59 3.59
l2 2.31 3.31

Ω3
lx 14.30 15.30
ly 18.50 19.50

Ω4
l3 2.59 3.59
l4 2.31 3.31

Adding accurate eigenvectors to the projection basis

First scheme of improving the quality of ROM is to add to the projection space vectors representing
eigenresonances of the macromodels. The most intuitive way is to add the eigenvectrs that hit the
frequency band of interest. Eigenfrequencies of all local ROMs in the frequency band 0 to 16 GHz are
shown in Fig. 3. They were computed as eigenvalues of the matrix pencil (ΓΩi ,CΩi). It can be seen
that there is no eigenresonances in the frequency band of interest.

8 9 10 11 12 13 14 15 16
Frequency (GHz)

2

3

4

frequency band of interest

Figure 3: Spectrum of the macromodels.

We can assume that poles that are in the neighbourhood of the band of analysis are crucial in
terms of accuracy of the results. Fig. 4 shows the results of the analysis when all eigenvectors
up to 20 GHz were added to the basis. The scattering parameters are much more correlated with
reference parameters, but the computation effort made to compute such a large number of eigenvectors
is unacceptable.
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Figure 4: Scattering parameters computed with the projection basis enriched with the eigenvectors
up to 20 GHz.

Adding snapshots to the basis

Second scheme is to improve the quality of the ROM by adding snapshots – that is vectors of the
electromagnetic field in selected subdomain at the specified frequency. For this purpose, we need to
define the following system of equations, based on equation 1 in which vectors of amplitudes of FE an
TM modes defined at the boundaries EδΩi

are replaced with the identity matrix I (it is equivalent to
the assumption that all TE and TM modes at the boundary are equally excited):

(ΓΩi − k2CΩi) ·EΩi = −(GδΩi
− k2TδΩi

) · I (7)

Note that right-hand side matrix of the above equation contains multiple eigenvectors. According
to Table 2, there are 82 right-hand side vectors in the system describing macromodel 2. Consequently,
there are 81 and 82 right-hand side vectors in macromodel 3 and 4. Fig. 5 shows the results of
uplifting all local bases with one full solution of the local systems of equation computed at the center
frequency. The result is very good - the level of the actual error is approximately 1e-4. However, the
computational effort made in this step was very high due to the large number of right-hand side vectors
of the local system of equations.

11.5 11.6 11.7 11.8 11.9 12

Frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|s
1

1
|,
 |
s

2
1
| 
(d

B
)

|s
11

| - FEM-PMOR

|s
21

| - FEM-PMOR

|s
11

| - FEM-MP

|s
21

| - FEM-MP

11.5 11.6 11.7 11.8 11.9 12

Frequency (GHz)

10
-8

10
-6

10
-4

10
-2

10
0

|S
P

M
O

R
 -

 S
M

P
|

max eigenvalue residue: 0.00052378

error (s
11

)

error (s
21

)

initial basis 
+ ~80 solution
vectors

Figure 5: Scattering parameters computed with the projection basis enriched with solution vectors of
for all right-hand side vectors.
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In order to limit the computational effort, the solution of (7) can be computed only for the selected
number of right-hand sides. Surely, the solution for the fundamental modes should be computed as
those modes transmit the most of the energy. The measure based on the estimated error can be also
used to decide if more vectors should be computed. For this purpose, the criterion based on the local
error estimator may be used.

Error estimator

Local error estimator is defined in this section.
Based on the local system of equation defined in (7), equivalent reduced-order model takes the

following form:

(Γ̃Ωi − k2C̃Ωi) · ẼΩi = −(G̃δΩi
− k2T̃δΩi

) · I (8)

The reduced-order model is represented by the small and dense matrices Γ̃Ωi , C̃Ωi ∈ Rr×r, G̃δΩi
,

T̃δΩi
∈ Rr×m, where m is the number of vectors used for modal projection on the artificial boundary

(number of right-hand side vectors) and r is the dimensin of the reduced space.
The a posteriori error introduced by the MOR is based in the residual error matrix defined as:

R(k) = (ΓΩi − k2CΩi)QiẼΩi + (GδΩi
− k2TδΩi

)I (9)

where ẼΩi is a solution matrix of the local system of equations in which EδΩi
was replaced with identity

matrix I. The matrix R(k) ∈ RN×m contains m residual vectors, each of them corresponds to one of
TE or TM modes defined at the macromodel boundary.

The estimated error is then defined as:

ζS(k) = BTR, (10)

where B is the right hand side matrix:

B(k) = −(GδΩi
− k2TδΩi

) · I (11)

In order to analyse the estimated error for all right-hand side vectors separately, we define the
independent error estimators for all residual vectors Ri(k), i = 1, . . . ,m:

ζiS(k) = |BTRi|2. (12)

Now, the values of ζiS(k) can serve as a criterion to choose the residual vectors that contribute to
the overall error the most. Fig. 6 shows this metric for all three macromodels.
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Figure 6: Estimated error computed for all the residual vectors in three macromodels. Red points -
vectors with the highest value of the estimated error.
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Figure 7: Scattering parameters computed with the projection basis enriched with the limited num-
ber of solution vectors.
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Computational time

Time of generating new projection basis in all macromodels is given in Table 4. Generating new
basis includes single LU factorization (using UMFPACK package) and multiple ’solve’ operations for
computing several block moments.

Figures 8,9,10 shows the comparison of convergence of three methods for solving linear sytems
of equations – preconditioned conjugate gradient (PCG), deflated preconditioned conjugate gradient
(deflated PCG) and generalized minimal residual method (GMRES).

Ω1 Ω2 Ω3 Ω4 Ω5

time of computing new local basis (s) 11.2 28.6 22.7 27.6 9.8

number of snapshots to compute - 10 10 10 -
number of iterations - 28 23 22 -

time of iterative solution - def. PCG (s) - 11.3 9.8 9.6 -

Table 4: Comparison of the execution time of the new basis generation and modification of the existing
one.
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Figure 8: Convergence of PCG, deflated PCG and GMRES for solving in macromodel 2.
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Figure 9: Convergence of PCG, deflated PCG and GMRES for solving in macromodel 3.
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Figure 10: Convergence of PCG, deflated PCG and GMRES for solving in macromodel 4.

Summary

• The initial basis was rather poor - the change in geometry parameters (the analysed design and
the ’initial’ one) was quite significant, especially that the filter is very sensitive to changes in the
tuning screw lengths.

• Deflated PCG converged much faster than PCG and GMRES - in all considered cases, the number
of iterations was the lowest.
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2.1.1 Dual mode circular waveguide filter - wideband analysis

The same filter was analysed in the wide frequency band: 11.4 - 13.4 GHz. The initial set of design
parameters p0 was the same as in the narrowband analysis. However, in order to obtain desired
accuracy of ROMs, the order of the ROM was higher than in the previous example. Also, the expansion
frequency was different due to the different frequency band of interest.

Initial results with PMOR
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Figure 11: Scattering parameters computed with the initial PROM.

Results with uplifted PROMs
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Figure 12: Scattering parameters computed with the uplifted PROM.
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In this case, each of three local modes included four poles in the frequency band of interest. In total,
12 eigenvectors were computed and 23 solutions vectors of the local linear system of equation. Details
on the number of vectors added to the solution space and the convergence of iterative methods is given
below.

Convergence of iterative methods and computational time

Ω1 Ω2 Ω3 Ω4 Ω5

time of computing new local basis (s) 14.3 37.7 30.6 35.9 12.5

number of eigenvectors to compute - 4 4 4 -
number of iterations - 17 20 16

time of iterative solution - Davidson (s) - 2.7 2.1 1.8 -

number of snapshots to compute - -
number of iterations - 6 7 10 -

time of iterative solution - def. PCG (s) - 6.6 7.2 10.1 -

Table 5: Comparison of the execution time of the new basis generation and modification of the existing
one (wideband analysis).
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Figure 13: Convergence of PCG, deflated PCG and GMRES for solving in macromodel 2 (wideband
analysis).

10



0 5 10 15 20 25 30 35 40 45

10
0

3

deflated PCG

0 5 10 15 20 25 30 35 40 45

10
0 PCG

0 5 10 15 20 25 30 35 40 45

10
0 GMRES

Figure 14: Convergence of PCG, deflated PCG and GMRES for solving in macromodel 3 (wideband
analysis).
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Figure 15: Convergence of PCG, deflated PCG and GMRES for solving in macromodel 4 (wideband
analysis).
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2.2 5th order waveguide filter

The second example is the 5th order waveguide filter. The structure was partitioned into seven subdo-
mains Ω1,...,7 by means of six artificial boundaries S1,...,6 (as shown in Fig. 16). Five subdomains were
subject to the PMOR – Ω2,...,6.
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Figure 16: The structure of the filter and the segmentation scheme.

Table 6: Values of design parameters for initial design p0 and for the analysed design p.

domain variable p0 p

Ω2
d1 1.410 2.000
R1 13.624 12.188

Ω3
h1 5.456
w1 2.430

Ω4

W 27.685 27.805
L1 13.444 12.194
L2 15.093 16.743

Ω5
h2 5.949
w2 2.430

Ω6
d2 0.650 2.000
R2 10.488 12.264
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Results of the analysis with the initial PROM
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Figure 17: Scattering parameters for the initial ROM

Results of the analysis with the uplifted PROM
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Figure 18: Scattering parameters for the uplifted ROM.
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Figure 19: Eigenfrequencies of the local models.

In total, one eigenvector was computed (the pole of the macromodel 4) and 21 solution vectors of the
linear system of equation. Table 7 contains time of computations: new projection basis and computing
the additional vectors by means of Davidson methos (for eigenproblem) and deflated PCG method (for
the linear system).

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

time of computing new local basis (s) 7.6 20.3 60.9 136.1 68.7 21.1 6.4

number of eigenvectors to compute - - - 1 - - -
number of iterations - - - 3 - - -

time of iterative solution - Davidson (s) - - - 2.3 - - -

number of snapshots to compute - 6 6 2 2 5 -
number of iterations - 39 15 2 4 10 -

time of iterative solution - def. PCG (s) - 7.0 12.9 9.4 4.0 4.2 -

Table 7: Comparison of the execution time of the new basis generation and modification of the existing
one.
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Figure 20: Convergence of iterative solvers: PCG, GMRES, deflated PCG.
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