

Electromagnetic Design of flexIble SensOrs

Report 89 ARPACK+ABC

dr eng. Grzegorz Fotyga August 19, 2020

The "EDISOn - Electromagnetic Design of flexIble SensOrs" project, agreement no TEAM TECH/2016-1/6, is carried out within the TEAM-TECH programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Fig. 1. A cavity backed patch antenna geometry. The cavity is totally filled with Teflon ($\epsilon_r = 2.0$) and its dimensions are $0.1 \times 6 \times 8 \ cm^3$, while the surface of the patch is $3 \times 4 \ cm^2$.

Figure 1: Cavity backed patch antenna - the ABC placement is not defined.

1 Test Structure

Mode	Unconstrained		Constrained		HFSS
No.	$f_r + j \frac{f_r}{2Q}$	err(e)	$f_r + j \frac{f_r}{2Q}$	err(e)	f_r
1	3.3e-07+j4.1e-10	0.13	3.32 +j0.67	1.6e-15	3.30
2	2.6e-07+j2.7e-07	0.47	4.62 +j0.52	2.3e-15	4.60
3	5.9e-08+j7.7e-07	0.29	6.47 +j1.08	1.4e-15	-
4	3.32 +j0.67	0.65	10.07 +j1.57	1.4e-15	-
5	4.62 +j0.52	0.13	10.77 +j1.94	6.7e-15	-
6	6.47 +j1.08	0.03	12.52 +j1.96	4.3e-15	-

TABLE I FIRST LOWEST EIGENVALUES OF THE PATCH ANTENNA COMPUTED WITH AND WITHOUT CONSTRAINED EQUATIONS.

Figure 2: Cavity backed patch antenna - the reference results from the paper.

• Defined in:

Zekios, C., P. Allilomes, and G. Kyriacou. "Eigenanalysis of open-radiating microwave structures with efficient suppression of spurious modes." 2015 IEEE International Conference on Computational Electromagnetics. IEEE, 2015.

- substrate: teflon, $\epsilon_r = 2$
- The ABC placement is not defined.

2 Linearization

The original FEM equation:

$$\mathbf{Se} - k_0^2 \mathbf{Me} + jk_0 \mathbf{Re} = 0 \tag{1}$$

Figure 3: Cavity backed patch antenna - model 1

Assuming $\lambda = l_0$, we obtain the characteristic polynomial:

$$P(\lambda) = -\lambda^2 \mathbf{M} + \lambda \mathbf{R} + \mathbf{S} = 0 \tag{2}$$

Four linearization formulas have been considered, symmetric and non-symmetric, taken from eq. (28) and (29):

• Zekios, Constantinos L., Peter C. Allilomes, and George A. Kyriacou. "DC and Imaginary spurious modes suppression for both unbounded and lossy structures." IEEE Transactions on Microwave Theory and Techniques 63.7 (2015): 2082-2093.

Note that the two variants are considered, with and without j.

$$\begin{pmatrix} \lambda \begin{bmatrix} \mathbf{0} & -\mathbf{M} \\ -\mathbf{M} & \mathbf{R} \end{bmatrix} + \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix} \end{pmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix},$$
(3)

$$\begin{pmatrix} \lambda \begin{bmatrix} \mathbf{0} & -\mathbf{M} \\ -\mathbf{M} & j\mathbf{R} \end{bmatrix} + \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix},$$
(4)

$$\left(\lambda \begin{bmatrix} \mathbf{R} & -\mathbf{M} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}\right) \begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix},\tag{5}$$

$$\left(\lambda \begin{bmatrix} j\mathbf{R} & -\mathbf{M} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \right) \begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}.$$
 (6)

3 Results obtained using eigs - model 1

In the first model the ABC is placed on the 100×200 mm box surface. The results (in GHz) obtained using eigs() function, using shift: $\sigma = 83.833800878067265$, corresponding to f = 4GHz, n = 53000. The subsequent tables correspond to the formulas: (3)-(6).

2.025202836472777 - 1.425063530344964i
2.489637529055578 - 0.025000996311855i
3.239086939318947 - 0.040135359711567i
3.494418018647265 - 1.647021575824312i
4.138376613564292 - 0.032471151536757i
4.248121097134841 - 2.173780778262850i
4.980437311941355 - 0.045604672249391i
4.974782027763423 - 1.858679258787530i
5.501896233559213 - 1.929901922833569i
6.010288695891667 - 0.034122886108341i

	3.775982525159236
	3.832543614928898
	3.835397186454839
	3.855782188625494
	3.951018114516339
	3.957888436111936
	4.110820604645940
	4.157645582254611
	4.258205246335582
	4.303294708847684
2.0252028	36465801 - 1.425063530360421i
2.4896375	29055176 - 0.025000996311375i
3.2390869	39318885 - 0.040135359711266i
3.4944180	18639205 - 1.647021575824692i
4.1383766	13564502 - $0.032471151536578i$
4.2481210	97128102 - 2.173780778276951i
4.9804373	11940851 - $0.045604672250089i$
4.9747820	27715688 - 1.858679258801808i
5.5018962	33528012 - 1.929901922824393i
6.0102886	95892004 - $0.034122886108579i$
	3.775982525159452
	3.832543614929022
	3.835397186454190
	3.855782188624795
	3.951018114516285
	3.957888436110809
	4.110820604646168
	4.157645582254497
	4.258205246335123
	4.303294708846614

4 Results obtained using eigs - model 2

In the second model the boundary conditions are composed of PEC (patch and ground) and ABC (rest of BC).

Figure 4: Cavity backed patch antenna - model 2

2.2443291	75010271 - $0.403482521835863i$
3.0061943	90127013 - $0.521780577672458i$
3.7476127	95119731 - 0.753575647377612i
4.7844901	80508920 - 0.616222939193018i
5.6462544	37343624 - $0.926137854679338i$
6.4095744	50608256 - 0.779661533756349i
6.7689740	26160953 - 1.020401837530371i
7.4025202	38760083 - $0.768186314457868\mathrm{i}$
	2.091076057752655
	2.789436104941284
	3.415505541753653
	4.452560102932463
	5.157743134286139
	5.905818172757035
	6.147183273341259
	6.835572118868221
	7.223280094025505
	7.419795104254950

5 Results obtained using eigs - model 3

In the second model the boundary conditions are composed of PEC (ground) and ABC (rest of BC).

$\fbox{2.312339110178794 + 0.385539722104084i}$
$2.458871141210532 + 1.552041104713652 \mathrm{i}$
$2.456076989624543 + 1.558230453147993 \mathrm{i}$
$\boxed{3.066336300241635+0.481090082540569i}$
$3.921743745138881 + 0.621716321025134\mathrm{i}$
$3.982543755851051 + 1.699220200745956 \mathrm{i}$
$3.983965904668688 + 1.720330881217864 \mathrm{i}$
$4.857229727663196 + 0.498160989089874 \mathrm{i}$
$5.311050220310877 + 1.833194875063340\mathrm{i}$
$5.845200790398373 \pm 0.683098752834095\mathrm{i}$

6 Cavity backed patch antenna - Sparams

Figure 6: Cavity backed patch antenna - with excitation

Figure 7: Cavity backed patch antenna, S-params, **GENERALIZED** waveguide excitation

Resonances from the S-plot in GHz (similar to the results obtained using model 2, and linearization (5)):

3.41
5.18
6.41
6.72

Figure 8: Cavity backed patch antenna, field pattern

Figure 9: Cavity backed patch antenna, S-params, \mathbf{LUMPED} excitation