

Electromagnetic Design of flexIble SensOrs

Report 91 SLEPC for lossy surface

dr eng. Grzegorz Fotyga September 23, 2020

European Union European Regional Development Fund

"EDISOn–Electromagnetic Design of flexIble SensOrs" Project, Agreement POIR.04.00-00-1DC3/16-00 date December 6, 2016, within the TEAM-TECH Program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Figure 1: Nonlossy case, resonant frequencies, o - analytical solution, x - inventSIM (22.86mm×10.16mm×30mm box).

1 Nonlossy case

Box: 22.86mm×10.16mm×30 mm. Resonant frequecies: Fig 1, and tab. below.

k	f [GHz]
172.7788902375896	8.243877215534543
250.5019485926159	11.952312597967991
294.1283704608714	14.033879765927290
326.4631847112970	15.576685360413224
338.3759767757345	16.145085787909728
342.9028460224631	16.361078344578505
345.5577804751792	16.487754431069085
354.2097242753986	16.900568532760754
373.4660524181642	17.819354413447375
397.9487531180598	18.987508568142314

2 Lossy case

The same example, however the boundary conditions are made of conducting surfaces (characterized by sigma). Method used to solve nonlinear eigenproblem: Polynomial interpolation. A matrix polynomial is built by evaluating the operator at a few points, then PEP is used to solve the polynomial eigenproblem.

Figure 2: Lossy case, as a function of sigma. Real part of resonant frequencies. Blue lines: resonances of nonlossy problem.

Figure 3: Lossy case, as a function of sigma. Imag part of resonant frequencies.