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a A contour integral-based projection method for nonlinear eigen-
problems associated with dispersive boundary conditions

Assuming the dispersive surface boundary conditions of the problem the finite element formulation
(FEM) leads to the following nonlinear eigenproblem (NEP):

(Γ + γ(s)G+ s2C)e = 0. (1)

where s is a frequency parameter1, s ∈ Ω, and Ω ⊂ C. γ(s) ∼
√
s is a scalar function modeling

the dispersion of the surface impedance. FEM system matrices: Γ, G,C ∈ Rn×n, n is the number of
unknowns, e ∈ Cn, e 6= 0. Eq. (1) can be represented as follows:

T (s)e = 0. (2)

Here, we assume that T (s) : Ω→ Cn×n is holomorphic in domain Ω.
The goal is to find all eigenvalues that lie in the closed contour Γ and associated eigenvectors using

the method proposed in:

1. Yokota, Shinnosuke, and Tetsuya Sakurai. "A projection method for nonlinear eigenvalue prob-
lems using contour integrals." Jsiam Letters 5 (2013): 41-44.

To this end one has to generate an eigenspace using contour integrals for curve Γ:

Sκ =
1

2πi

∫
Γ
gκ(s)T (s)−1Uds, κ ∈ N (3)

where U ∈ Cn×L, L ≤ n and gκ are polynomial functions of κ-th degree.
Next, we evaluate the contour integral (3) using a numerical integral, resulting in:

Ŝκ =

N∑
p=1

wpgκ(sp)T (sp)
−1U, (4)

where sp are integral points for p = 1, ..., N , wp are weights corresponding to sp. It has to be noted
that this step is the most time consuming, since it requires to solve N system of equations with large
number (n) of unknowns. Once all matrices Ŝκ are computed for κ = 0, ...,K − 1 one can construct
the ortonormal projection basis:

span(Q) = span([Ŝ0 . . . ŜK−1]) (5)

and use it to generate the reduced eigenproblem by means of e.g. Rayleigh-Ritz supspace projection
technique (see [1] for details).

b Inhouse CISS results

Here, we use the method descrived in Section a to compute the resonant frequencies of the structure
shown in Fig. 1.

• Resonator (22.86× 10.16× 30 mm) with dispersive surface boundary conditions: σ = 5800

• Problem size = 362678

• integration points: N = 80

• size of left/right probing space made of random vectors, denoted by U : 11
1s = jω/c = jk0



Figure 1: Resonator with dispersive surface boundary conditions.

• number of moments: 2

• computational time: 1677.6s

l ||T(k) · x||/|k| f[GHz]
1 1e-13 8.190395959928 + 0.052963326912i
2 1e-13 11.890412063906 + 0.061543106886i
3 1e-12 13.962144599581 + 0.071396538013i
4 1e-13 15.483001263886 + 0.093268182875i
5 1e-12 16.056033990150 + 0.088795266000i
6 1e-13 16.289902974497 + 0.071046891862i
7 1e-12 16.412135641333 + 0.075439113972i
8 1e-13 16.780801725899 + 0.119114475797i
9 1e-13 16.796993129566 + 0.103175257975i

c FAST CISS idea

In this section the modification of the standard CISS method is proposed which leads to the speed up
of computations without devoting the computational accuracy. Originally, in order to construct the
projection basis Q, one has to solve large system of equations N times (4) using e.g. LU factorization.
This is definitely the most time consuming step in the whole process. The solution vectors, which are
used to construct Q in (4) and (5), can be gathered together, creating the following matrix:

E = [E(s1), E(s2) . . . E(sN )] (6)

where

T (si)E(si) = U (7)

and E ∈ Cn×NL. However, usually the rank of E is much lower than the number of columns (NL).
In other words, there is a redundancy in the basis, since the electromagnetic field does not vary
significantly inside a given frequency band of interest. Our goal is to create the reduced basis V̂ , which
approximates E with sufficient accuracy:

span(V̂ ) ≈ span(E) (8)



Here, V̂ is composed of solution vectors [E(ŝ1), E(ŝ2) . . . E(ŝN̂ )], computed in properly specified set of
N̂ frequency points ŝ1, ŝ2, ...ŝN̂ , where usually N̂ � N . Thus, the whole process is performed much
faster. The orthogonality of the projection basis V̂ is ensured by the Gram–Schmidt process. Applying
the Galerkin method with V̂ as basis and testing vectors, a reduced order model (ROM) system is
obtained:

T̂ (s)Ê(s) = Û (9)

where

T̂ (s) = Γ̂ + γ(s)Ĝ+ s2Ĉ (10)

and the reduced matrices are given by: Γ̂ = V̂ HΓV̂ ∈ CR×R, Ĝ = V̂ HGV̂ ∈ CR×R, Ĉ = V̂ HCV̂ ∈
CR×R, Ûr = V̂ HU ∈ CR×L. Note that R� NL� n

Each time a new solution matrix E(ŝi) is appended to the projection basis V̂ , the error introduced
by the ROM is assessed by means of a correctly defined error estimator. The role of the estimator is
twofold: Firstly, it is used as a stopping criterion—once the estimated error drops below a specified
tolerance over the entire frequency band, the algorithm stops. Secondly, it guides the process of
selecting expansion frequency points within the band of interest. To this end, a greedy scheme is
applied. That is, the next point is located at the frequency at which the estimated error is largest.
It is worth mentioning that this kind of reduction scheme based on the error-estimator enables full
automation of the reduction process, since at every stage of the reduction, we gain insight into the
error introduced by the ROM.

In order to define the error estimator formula, we first have to formulate the residual error matrix:

R(s) = U − (Γ + γ(s)G+ s2C)V̂ Ê(s) (11)

where the reduced solution matrix Ê(s) is the solution of (9).
Based on (9) and (11) we can efficiently assess the error introduced by the reduced order model

using the following goal-oriented error estimator:

errest(s) = ||RTR||/||UTU || (12)

Note that the blocks of matrices in expanded version of (12) are frequency-independent and can be
computed only once, in the prepossessing stage, so-called offline. More precisely, the offline stage
comprises all the computations with complexity depending on n, which are performed only once. On
the other hand, the online phase concerns all the computations with the complexity depending on R,
including error estimation process (12) and fast frequency sweep (9).

The above definition of the error estimator is used to fully control the reduction algorithm in terms
of the stopping criteria, as well as the expansion point selection. Although the estimator operates on
low-order matrices, it must be computed at each frequency within the band of interest, every time a
projection basis is expanded.

Finally, the bocks of matrices used in (6) are approximated using:

E(s) ≈ V̂ Ê(s). (13)

To sum up, V̂ is usually computed much faster as compared to E and it allows one to obtain all
eigenpairs with sufficient accuracy.

d Fast CISS tests

• Experiment 1

– tol = 1e-3



Figure 2: Quadrature points selected using greedy strategy.

– integration points: nc = 80 (7 selected)

– size of left/right probing space (random vectors): 11

– number of moments: 2

– computational time: 199.8s

l ||T (k) · x||/|k| f[GHz]
1 1e-6 8.190396680354 + 0.052963179817i
2 1e-4 11.890411888083 + 0.061535579489i
3 1e-5 13.962147346702 + 0.071396493527i
4 1e-5 15.483002065627 + 0.093269193525i
5 1e-6 16.056034069277 + 0.088795245148i
6 1e-6 16.289902939957 + 0.071046852259i
7 1e-6 16.412135432651 + 0.075439258222i
8 1e-6 16.780801643546 + 0.119114440769i
9 1e-5 16.796993180353 + 0.103175183494i

• Experiment 2

– tol = 1e-5

– integration points: nc = 80 (9 selected)

– size of left/right probing space (random vectors): 11

– number of moments: 2

– computational time: 265.2s

l ||T (k) · x||/|k| f[GHz]
1 1e-7 8.190396024796 + 0.052963278720i
2 1e-6 11.890411990728 + 0.061543174083i
3 1e-6 13.962144506062 + 0.071396503104i
4 1e-6 15.483001106192 + 0.093268145372i
5 1e-6 16.056033971201 + 0.088795389806i
6 1e-6 16.289902976252 + 0.071046897588i
7 1e-7 16.412135664158 + 0.075439091585i
8 1e-7 16.780801710781 + 0.119114481450i
9 1e-7 16.796993067579 + 0.103175293053i



Experiment 3

– tol = 1e-6

– integration points: nc = 80 (9 selected)

– size of left/right probing space (random vectors): 21

– number of moments: 2

– computational time: 350.4s

l ||T (k) · x||/|k| f[GHz]
1 1e-9 8.190395958774 + 0.052963327342i
2 1e-8 11.890412062933 + 0.061543107206i
3 1e-8 13.962144599058 + 0.071396533864i
4 1e-8 15.483001264349 + 0.093268179928i
5 1e-9 16.056033990421 + 0.088795266265i
6 1e-9 16.289902974774 + 0.071046891999i
7 1e-9 16.412135641443 + 0.075439115063i
8 1e-9 16.780801725462 + 0.119114476070i
9 1e-8 16.796993129555 + 0.103175258467i
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Figure 3: Estimated error for 1-9 integration points.


