Electromagnetic Design of flexIble SensOrs

Report 12 - Multiparametric MOR studies

M. Sc. Damian Szypulski

December 20, 2019

Revision	Date	Author(s)	Description 1.0
22.08 .2017		created	

1. Basic infromation

The aim of this report is to check how different projection bases are working for multiparametric simulations of simple geometry.

Figure 1: Structure under analysis. $\approx 40 \mathrm{k}$ variables
Structure under consideration is simple microwave stub with dimensions shown in Fig. 1 using $h=0.5 \mathrm{~mm}, \epsilon_{r}=3.5$ substrate. Lumped ports and ABC conditions are applied.

1.1. Case A - varying width

The reference point for creating mesh is located at $\mathrm{W}=2.5$ and $\mathrm{L}=2.5$. After that MeshMorphing is applied, and points in range of $\mathrm{W}=2.4$ to $\mathrm{W}=2.49$ (starting from $\mathrm{W}=2.49$) at $\mathrm{L}=2.49$ with step 0.01 are considered (total 10 points).

1.2. Case B - varying length

The reference point for creating mesh is located at $\mathrm{W}=2.5$ and $\mathrm{L}=2.5$. After that MeshMorphing is applied, and points in range of $\mathrm{L}=2.4$ to $\mathrm{L}=2.49$ (starting from $\mathrm{L}=2.49$) at $\mathrm{W}=2.49$ with step 0.01 are considered (total 10 points).

Figure 2: Case A. Family of curves varying from $\mathbf{W}=\mathbf{2 . 4}$ to $\mathbf{W}=\mathbf{2 . 4 9}$ with step 0.01 (total number=10). Insignificant changes are observed between subsequent series.

Figure 3: Case B. Family of curves varying from $\mathbf{L}=\mathbf{2 . 4}$ to $\mathbf{L}=\mathbf{2 . 4 9}$ with step 0.01 (total number=10). Significant changes are observed between subsequent series (in comparison to previous case).

2. Reference simulations

The aim of this section is to compare scattering parameters obtained with DIRECT simulation with and without Mesh Morphing. The difference in number of elements is negligible ($\approx 1 \%$), but the difference between obtained results saturates from around $1 \mathrm{e}-4$ at lowest frequency $(1 \mathrm{GHz})$ to around $1 \mathrm{e}-2$ at highest frequency (15 GHz). Adaptive meshing is not used in these cases.

2.1. Case A - varying width of stub

Figure 4: Error between reference characteristics with MeshMorphing and reference characteristics without MeshMorphing. $\approx 40 \mathrm{k}$ variables

Figure 5: Error between reference characteristics with MeshMorphing and reference characteristics without MeshMorphing. $\approx \mathbf{2 0 0 k}$ variables
2.2. Case B - varying length of stub

Figure 6: Error between reference characteristics with MeshMorphing and reference characteristics without MeshMorphing. $\approx 40 \mathrm{k}$ variables

3. Model Order Reduction for multiparametric simulation

The aim of this sections is to verify if projection basis calculated at one point (assume $\mathrm{W}=2.47$ for Case A and $\mathrm{L}=2.47$ for Case B) can be used at other points (using mesh morphing technique starting from $\mathrm{W}=2.49$ to $\mathrm{W}=2.4$ for Case A and from $\mathrm{L}=2.49$ to $\mathrm{L}=2.4$ for Case B).

Up to four projection bases are concatenated, and SVD algorithm is used to orthogonalize them. All vectors are taken into consideration (no rejection threshold is introduced). Singular values of bases concatenated of four sub-bases (4×14 vecs, first subplot is $3 \times 14+16$) are shown in Fig. 7 for both cases.

After that InventSim is started using -lp mode (Load Projection - LP Basis) and using mesh morphing between subsequent points.

Figure 7: Singular values of concatenated bases at four points of W or L.

3.1. Case A - varying width of stub

3.1.1. Basis constructed using RBM

Figure 8: Actual error of s_{11} parameter for projection bases concantenated of $1 / 2 / 3 / 4$ RBM bases.

3.1.2. Basis constructed using SAPOR

Figure 9: Actual error of s_{11} parameter for projection bases concantenated of $1 / 2 / 3 / 4$ SAPOR bases.

3.2. Case B - varying length of stub

3.2.1. Basis constructed using RBM

Figure 10: Actual error of s_{11} parameter for projection bases concantenated of $1 / 2 / 3 / 4$ RBM bases.

3.2.2. Basis constructed using SAPOR

Figure 11: Actual error of s_{11} parameter for projection bases concantenated of $1 / 2 / 3 / 4$ SAPOR bases.

